20 research outputs found

    Psychosocial Treatment of Children in Foster Care: A Review

    Get PDF
    A substantial number of children in foster care exhibit psychiatric difficulties. Recent epidemiologi-cal and historical trends in foster care, clinical findings about the adjustment of children in foster care, and adult outcomes are reviewed, followed by a description of current approaches to treatment and extant empirical support. Available interventions for these children can be categorized as either symptom-focused or systemic, with empirical support for specific methods ranging from scant to substantial. Even with treatment, behavioral and emotional problems often persist into adulthood, resulting in poor functional outcomes. We suggest that self-regulation may be an important mediat-ing factor in the appearance of emotional and behavioral disturbance in these children

    Psychosocial Treatment of Children in Foster Care: A Review

    Full text link

    A low-cost lead-acid battery with high specific-energy

    Get PDF
    Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those employed in conventional lead-acid batteries. Commercial-grade 6V/3×5Ah (C20-rate) lead-acid batteries have been assembled and characterized employing positive and negative plates constituting these grids. The specific energy of such a lead-acid battery is about 50 Wh/kg. The batteries can withstand fast charge–discharge duty cycles

    Lead-acid battery with high specific energy

    Get PDF
    An electrochemical method of manufacturing a corrosion resistant grid structure used in a lead-acid battery, said method comprising coating of substrate material such as herein described, with a metal layer of copper or nickel and a subsequent layer of lead/lead alloy followed by the electrodeposition of an organic material such as polyaniline and similar other organic material, over the above said lead/lead alloy layer by using an electrolyte such as oxalic acid to obtain a corrosion resistant grid structure used in a lead-acid battery

    A Low-Cost, High Energy-Density Lead/Acid Battery

    Get PDF
    Lightweight plastic grids for lead/acid battery plates have been prepared from acrylonitrile butadiene styrene copolymer. The grids have been coated with a conductive and corrosion-resistant tin oxide layer by a novel rapid thermally activated chemical reaction process. X-ray powder diffraction and X-ray photoelectron spectroscopy show the coated tin oxide film to be SnO2-like. The grids are about 75% lighter than conventional lead/acid battery grids. A 6 V/1 Ah lead/acid battery has been assembled and characterized employing positive and negative plates made from these grids. The energy density of such a lead/acid battery is believed to be more than 50 Wh/kg

    Lead-acid cells with polyaniline-coated negative plates

    No full text
    Positive- and negative-limited lead-acid cells with conventional and polyaniline (PANI)-coated negative plates were assembled and tested at varying discharge rates. The cells with PANI-coated negative plates exhibit lower impedance in relation to conventional cells and sustain higher discharge-rates with lesser loss in capacity during prolonged charge–discharge cycling as compared to conventional cells. It is suggested that PANI-coated negative plates are beneficial in designing lead-acid batteries operating at partial-state-of-charge

    A sealed, starved-electrolyte nickel–iron battery

    No full text
    A sealed, starved-electrolyte, negative-limited 6 V/1 Ah laboratory prototype of a nickel–iron (Ni–Fe) battery comprising five cells stacked in series with ceria-supported platinum as hydrogen–oxygen recombinant catalyst was assembled. The battery was tested under various operational conditions. While a continuous increase in gaseous pressure in the cells was observed without the recombinant catalyst, the cells with the recombinant catalyst registered a decline in gaseous pressure subsequent to the onset of hydrogen–oxygen recombination. The battery showed little decay in its capacity during its life-cycle tests conducted at C/5 rate at 25 �C. The battery performance is superior to its conventional vented-counterpart

    On-line monitoring of lead–acid batteries by galvanostatic non-destructive technique

    No full text
    Measurements of charge-acceptance, internal resistance, voltage and self-discharge of a battery reflect its state-of-health (SOH). The galvanostatic non-destructive technique (GNDT) can be used to monitor the SOH of a battery by analyzing its impedance parameters, namely ohmic resistance, charge-transfer resistance and interfacial capacitance. In this technique, the battery is discharged galvanostatically at a substantially low-rate over a short duration, wherein the state-of-charge (SOC) of the battery is not affected. It has been possible to obtain charge-transfer resistance and double-layer capacitance values for both positive and negative plates of a commercial grade 6-V/4-Ah valve-regulated lead–acid battery during its dynamic discharge. The resistive components of the battery are found to be minimum at state-of-charge values between 0.2 and 0.9. The study shows that the optimum performance of the VRLA battery can be achieved at SOC values between 0.2 and 0.9. The ohmic resistance of the battery displays a linear variation with logarithmic values of its SOC. The technique provides an attractive tool for on-line monitoring of lead–acid batteries

    Assembly and performance of hybrid-VRLA cells and batteries

    No full text
    Several commercial-grade hybrid-VRLA and AGM-VRLA cells and batteries have been assembled and tested under varying charge–discharge rates in a temperature range between 50 and −40 ◦C. Impedance studies on hybrid-VRLA and AGM-VRLA cells have been conducted to reflect on their resistive and capacitive values. A linear relationship is found to exist between logarithmic state-of-charge values and ohmic impedance of batteries. In general, hybrid-VRLA cells and batteries perform better than their AGM-VRLA counterpart. A field-performance study conducted on AGM-VRLA and hybrid-VRLA batteries for solar-lighting application also suggests the latter to be superior

    Comparative study of lead-acid batteries for photovoltaic standalone lighting systems

    No full text
    The lead-acid battery is often the weakest link in photovoltaic (PV) installations. Accordingly, various versions of lead-acid batteries, namely flooded, gelled, absorbent glass-mat and hybrid, have been assembled and performance tested for a PV stand-alone lighting system. The study suggests the hybrid VRLA batteries, which exhibit both the high power density of absorbent glass-mat design and the improved thermal properties of the gel design, to be appropriate for such an application. Among the VRLA-type batteries studied here water loss for the hybrid VRLA batteries is minimal and charge-acceptance during the service at high temperatures is better in relation to their AGM counterparts
    corecore