171 research outputs found

    Controlling Chimeras

    Get PDF
    Coupled phase oscillators model a variety of dynamical phenomena in nature and technological applications. Non-local coupling gives rise to chimera states which are characterized by a distinct part of phase-synchronized oscillators while the remaining ones move incoherently. Here, we apply the idea of control to chimera states: using gradient dynamics to exploit drift of a chimera, it will attain any desired target position. Through control, chimera states become functionally relevant; for example, the controlled position of localized synchrony may encode information and perform computations. Since functional aspects are crucial in (neuro-)biology and technology, the localized synchronization of a chimera state becomes accessible to develop novel applications. Based on gradient dynamics, our control strategy applies to any suitable observable and can be generalized to arbitrary dimensions. Thus, the applicability of chimera control goes beyond chimera states in non-locally coupled systems

    Basins of Attraction for Chimera States

    Get PDF
    Chimera states---curious symmetry-broken states in systems of identical coupled oscillators---typically occur only for certain initial conditions. Here we analyze their basins of attraction in a simple system comprised of two populations. Using perturbative analysis and numerical simulation we evaluate asymptotic states and associated destination maps, and demonstrate that basins form a complex twisting structure in phase space. Understanding the basins' precise nature may help in the development of control methods to switch between chimera patterns, with possible technological and neural system applications.Comment: Please see Ancillary files for the 4 supplementary videos including description (PDF

    Intermittent chaotic chimeras for coupled rotators

    Full text link
    Two symmetrically coupled populations of N oscillators with inertia mm display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendula. In particular, we report the first evidence of intermittent chaotic chimeras, where one population is synchronized and the other jumps erratically between laminar and turbulent phases. These states have finite life-times diverging as a power-law with N and m. Lyapunov analyses reveal chaotic properties in quantitative agreement with theoretical predictions for globally coupled dissipative systems.Comment: 6 pages, 5 figures SUbmitted to Physical Review E, as Rapid Communicatio

    Solvable Model of Spiral Wave Chimeras

    Full text link
    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here we provide the first analytical description of such a spiral wave chimera, and use perturbation theory to calculate its rotation speed and the size of its incoherent core.Comment: 4 pages, 4 figures; added reference, figure, further numerical test

    Directed Flow of Information in Chimera States

    Get PDF
    We investigated interactions within chimera states in a phase oscillator network with two coupled subpopulations. To quantify interactions within and between these subpopulations, we estimated the corresponding (delayed) mutual information that -- in general -- quantifies the capacity or the maximum rate at which information can be transferred to recover a sender's information at the receiver with a vanishingly low error probability. After verifying their equivalence with estimates based on the continuous phase data, we determined the mutual information using the time points at which the individual phases passed through their respective Poincar\'{e} sections. This stroboscopic view on the dynamics may resemble, e.g., neural spike times, that are common observables in the study of neuronal information transfer. This discretization also increased processing speed significantly, rendering it particularly suitable for a fine-grained analysis of the effects of experimental and model parameters. In our model, the delayed mutual information within each subpopulation peaked at zero delay, whereas between the subpopulations it was always maximal at non-zero delay, irrespective of parameter choices. We observed that the delayed mutual information of the desynchronized subpopulation preceded the synchronized subpopulation. Put differently, the oscillators of the desynchronized subpopulation were 'driving' the ones in the synchronized subpopulation. These findings were also observed when estimating mutual information of the full phase trajectories. We can thus conclude that the delayed mutual information of discrete time points allows for inferring a functional directed flow of information between subpopulations of coupled phase oscillators

    Bistable Chimera Attractors on a Triangular Network of Oscillator Populations

    Full text link
    We study a triangular network of three populations of coupled phase oscillators with identical frequencies. The populations interact nonlocally, in the sense that all oscillators are coupled to one another, but more weakly to those in neighboring populations than to those in their own population. This triangular network is the simplest discretization of a continuous ring of oscillators. Yet it displays an unexpectedly different behavior: in contrast to the lone stable chimera observed in continuous rings of oscillators, we find that this system exhibits \emph{two coexisting stable chimeras}. Both chimeras are, as usual, born through a saddle node bifurcation. As the coupling becomes increasingly local in nature they lose stability through a Hopf bifurcation, giving rise to breathing chimeras, which in turn get destroyed through a homoclinic bifurcation. Remarkably, one of the chimeras reemerges by a reversal of this scenario as we further increase the locality of the coupling, until it is annihilated through another saddle node bifurcation.Comment: 12 pages, 5 figure

    Integrability of a globally coupled complex Riccati array: quadratic integrate-and-fire neurons, phase oscillators and all in between

    Full text link
    We present an exact dimensionality reduction for dynamics of an arbitrary array of globally coupled complex-valued Riccati equations. It generalizes the Watanabe-Strogatz theory [Phys. Rev. Lett. 70, 2391 (1993)] for sinusoidally coupled phase oscillators and seamlessly includes quadratic integrate-and-fire neurons represented by the special case of real-valued Riccati equations. It provides a low dimensional description to a wide new class of complex dynamical systems, warranting their rigorous analysis and thus providing deep insights into their collective dynamics. This result represents a significant advancement in our comprehending of coupled oscillatory systems and opens up many new avenues of research.Comment: 6 pages, 4 figure

    Birth and destruction of collective oscillations in a network of two populations of coupled type 1 neurons

    Full text link
    We study the macroscopic dynamics of large networks of excitable type 1 neurons composed of two populations interacting with disparate but symmetric intra- and inter-population coupling strengths. This nonuniform coupling scheme facilitates symmetric equilibria, where both populations display identical firing activity, characterized by either quiescent or spiking behavior, or asymmetric equilibria, where the firing activity of one population exhibits quiescent but the other exhibits spiking behavior. Oscillations in the firing rate are possible if neurons emit pulses with non-zero width but are otherwise quenched. Here, we explore how collective oscillations emerge for two statistically identical neuron populations in the limit of an infinite number of neurons. A detailed analysis reveals how collective oscillations are born and destroyed in various bifurcation scenarios and how they are organized around higher codimension bifurcation points. Since both symmetric and asymmetric equilibria display bistable behavior, a large configuration space with steady and oscillatory behavior is available. Switching between configurations of neural activity is relevant in functional processes such as working memory and the onset of collective oscillations in motor control

    The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors

    Get PDF
    Background: A deep understanding of what causes the phenotypic variation arising from biological patterning processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the pattern, for example the degree to which certain macroscopic structures are present. There is today no general procedure for how to relate a set of patterns and their characteristic features to the functional relationships, parameter values and initial values of an original pattern-generating model. Here we present a new, generic approach for explorative analysis of complex patterning models which focuses on the essential pattern features and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch lateral inhibition over a two-dimensional lattice. Results: By combining computer simulations according to a succession of statistical experimental designs, computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling, we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the parameter values of the original model, for example by predicting the parameter values leading to particular patterns, and provides insights that would have been hard to obtain by traditional methods. Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values and initial values of an underlying pattern-generating mathematical model
    corecore