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Abstract
Coupled phase oscillatorsmodel a variety of dynamical phenomena in nature and technological
applications. Non-local coupling gives rise to chimera states which are characterized by a distinct part
of phase-synchronized oscillators while the remaining onesmove incoherently. Here, we apply the
idea of control to chimera states: using gradient dynamics to exploit drift of a chimera, it will attain any
desired target position. Through control, chimera states become functionally relevant; for example,
the controlled position of localized synchronymay encode information and perform computations.
Since functional aspects are crucial in (neuro-)biology and technology, the localized synchronization
of a chimera state becomes accessible to develop novel applications. Based on gradient dynamics, our
control strategy applies to any suitable observable and can be generalized to arbitrary dimensions.
Thus, the applicability of chimera control goes beyond chimera states in non-locally coupled systems.

1. Introduction

Collective behavior emerges in a broad range of oscillatory systems innature and technological applications.
Examples includeflashingfireflies, superconducting Josephson junctions, oscillations in neural circuits and
chemical reactions, andmanyothers [1, 2]. Phase coupled oscillators serve as paradigmaticmodels to study the
dynamics of such systems [3–6]. Remarkably, localized synchronization—in contrast to global synchrony—may
arise in non-locally coupled systemswhere the coupling dependson the spatial distance between twooscillators.
Dynamical states consisting of locally phase-coherent and incoherent parts have been referred to as chimera states
[7, 8], alluding to thefire-breathingGreekmythological creature composedof incongruousparts fromdifferent
animals. Chimera states are relevant in a range of systems; theyhave beenobserved experimentally inmechanical,
(electro-)chemical, and laser systems [9–12], and related localized activity has been associatedwithneural dynamics
[13–24]. Bydefinition, local synchrony is tied to a spatial position thatmaydirectly relate to function: in aneural
network, for example, different neurons encodedifferent information [25–27]. Innon-locally coupledphase
oscillator rings, the spatial position of partial synchronynot only depends strongly on the initial conditions [7], but it
also is subject to pseudo-random(i.e., low-number)fluctuations [28]. Thesefluctuations are particularly strong for
persistent chimeras for just a fewoscillators [29], as in typical experimental setups. Thisnaturally leads to the
questionofwhether it is possible to control a chimera state andkeep at a desired spatial location.

In this article, we derive a control scheme to dynamicallymodulate the position of the coherent part of a
chimera. To the best of our knowledge, this is the first application of noninvasive control to spatial properties of
chimera states. Our control is based on gradient dynamics to optimize general location-dependent averages of
dynamical states. Defined as the placewhere local synchronization ismaximal, the spatial location of a chimera
state is such a space-dependent average. Aswith control of spatially localized patterns, chimera control relates—
by definition—to both traditional control approaches [30–32] aswell as of other localized patterns in, for
example, chemical [33] or optical [34] systems.However, the aim of chimera control differs from these control
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approaches. First, chimera control preserves a chimera state as awhole, as opposed to classical engineering
control.More specifically, its goal is not to change the dynamics qualitatively, that is, for example, to restore a
turbulent system to a periodic state, but rather to control space dependent averages. Second, chimera control is
noninvasive as a result of the underlying gradient dynamics. That is, in contrast to some approaches to control
the spatial position of localized patterns [34], the control strength vanishes upon convergence. Third, chimera
control extends beyond the spatial continuum limit, where the dynamics of individual oscillators are negligible.
It applies to systems offinite dimension, even down to just a handful of inhomogeneous oscillators. In contrast
to continuous spatial systems, where static or periodic localized patterns [14, 35–37]may shift, chimeras infinite
dimensions are localized chaotic states [38] (similar to localized turbulence in pipeflows [39, 40]) subject to
strong low-number fluctuations [28]. In summary, chimera controlmodulates the spatial location of a chimera
noninvasively, even in low-dimensional systems, and preserves its ‘internal’ incoherent oscillatory dynamics.

We anticipate chimera control to have a broad impact across differentfields. On the one hand, the control
schememay elucidate how a position ismaintained in (noisy and heterogeneous) real-world systemswhere
spatial localization of synchrony plays a functional role, such as neural systems. On the other hand, it is thefirst
step towards actually employing chimera states as functional localized spatio-temporal patterns. In fact, instead
of passively observing chimera states, the aim of control is to actively exploit chimeras for applications by
making the spatial location accessible. Their location could encode informationwhich allows, for example,
controlmediated computation. Despite the differences to chimera control, the control of dynamical states, such
as chaos, has led tomany intriguing applications in its own right [32, 41–43]. So in analogy to theGreek
mythological creature, onemay ask: whatwould you be able to do if you could control afire-breathing chimera?

2. Chimeras in non-locally coupled rings

Rings of non-locally coupled phase oscillators provide awell-studiedmodel inwhich chimera statesmay occur
[8]. Let =  S : be the unit interval with endpoints identified, and let π=  T : 2 denote the unit circle. Let d
be a distance function on S, → h : be a positive function, andα ∈ T,ω ∈  be parameters. The dynamics
of the oscillator at position ∈x S on the ring is given by

∫φ ω φ φ α∂ = − − +x t h d x y x t y t y( , ) ( ( , )) sin( ( , ) ( , ) )d . (1)t
0

1

The coupling kernel h determines the interaction strength between two oscillators, depending on theirmutual
distance. The system evolves on the torus ×S T where ∈x S is the spatial position of an oscillator on the ring
andφ ∈x t T( , ) its phase at time t on the torus.

Chimera states are characterized by a regionof local phase coherencewhile the rest of the oscillators rotate
incoherently. Letϕ Φ ϕ∈ = →S T: { : }denote a configurationof phases on the ring. The local-order parameter

∫ϕ ϕ=Z x h d x y y y( , ) ( ( , )) exp(i ( ))d (2)
0

1

is an observable which encodes the local level of synchrony of ϕ at ∈x S. That is, its absolute value
ϕ ϕ=R x Z x( , ) ( , ) is close to zero if the oscillators are locally spread out and attains itsmaximum if the phases

are phase synchronized close to x. A chimera state is a solutionφ x t( , )of (1)which consists of locally
synchronized and locally incoherent parts. The value of the local-order parameter yields local properties of a
chimera. The local-order parameter obtains itsmaximumat the center of the phase synchronized region and its
minimumat the center of the incoherent region; seefigure 1 for afinite dimensional approximation.

3. Chimera control

Is it possible to dynamicallymove a state to a desired position by exploiting drift properties? Before considering
chimera states, we consider general solutionsmoving in space. Herewe focus on systemswith one spatial
dimension, but it is straightforward to extend the notions to higher dimensions. A solution of (1)may be seen as
a one-parameter family of functionsφ Φ∈ ,t which assign a phase to each spatial position. Let Φ× → Q S: n

be differentiable in the first argument. Think ofQ as an observable of the system that depends on the spatial
positionS; here we look at the particular circular geometry because of its relevance in the context of chimera
states on a ring, but one could also consider observables on other geometries, such as the line. A solution φt of
(1)with initial conditionφ Φ∈0 is calledQ-traveling alongS if there are suitably smooth functions y(t) and

→ q S: n such that φ = −Q x q x y t( , ) ( ( ))t for all t; in particular, a solution isQ-traveling at constant speed
∈ v alongS if φ = −Q x q x vt( , ) ( )t for all t. Hence, the temporal evolution of aQ-traveling solution in terms

of the observable Q is a shift alongS.

2
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If there is away to influence the spatialmotion in a controlledway, it can be used to optimize a general
observableQ. Let∂ ∣f z( )z z0 denote the partial derivative of a function fwith respect to z at z0, let f ′ denote its total
derivative, and ż denote the temporal derivative of a function z(t). Let φt be aQ-traveling solutionwith q x( )
and y(t) such that φ = −Q x q x y t( , ) ( ( ))t . The function y(t) describes the spatial position of φtwith respect
toQ. For now,fix a target ∈x S* and assume that q is differentiable with all critical points being extrema. The
idea is to use an accessible systemparameter that governs the evolution of φt in terms of the observableQ to
maximizeQ at x*, or, put differently, to use the knowledge of how this accessible systemparameter influences
the evolution of y(t) tomaximize = −q y q x y( ) : ( * )

*x in y. To this end, we assume that for a given observableQ,

there is a family ha of coupling kernels, indexed by ∈ ⊂ a A , and a continuous invertiblemapν → A: such
that φt is aQ-traveling solution at speed ν=y a˙ ( )of (1) with coupling kernel ha. In otherwords, we assume that
the position y(t) of the solution φt is given by integrating ν a( ). Of course, if a is constant, we have

φ ν= −Q x q x a t( , ) ( ( ) )t , i.e. ,φt isQ-traveling at a constant speed alongS.
Control cannowbe realizedas gradientdynamicsbychoosing theparameter a suitably. Forγ > 0 andassuming

that the initial condition isnot a localminimum, the functionq y( )
*x ismaximized if y is subject to thegradientdynamics

γ= ∂y q y˙ ( ),
*

y x since this choice implies that ⩾q̇ 0
*x .Note that∂ = − ′q y q( )

*
y x − = −∂ − ∣x y q x y( * ) ( )

*x x . Thus, if

the function y(t)of aQ-traveling solutionφtobeys

γ γ φ= − ∂ − = − ∂y q x y Q x˙ ( ) ( , ) , (3)
* *

x
x

x t x

then the function φQ x( , )t will attain a (local)maximumat =x x* in the limit of → ∞t . At the same time, the
map ν allows us to use a as a control parameter. By definitionwe have ν=y t a t˙ ( ) ( ( )), and therefore (3) yields

ν γ φ= − ∂−a t Q x( ) ( , ) , (4)
*

x t x

1
⎛
⎝⎜

⎞
⎠⎟

a direct relationship between the traveling solution and the parameter a.More precisely, choosing a time-
dependent control parameter a according to (4) yields a traveling solutionwhose dynamicsmaximizes the
observableQ at x*.

Note that convergence to the target through control does not depend on the function ν.Moreover, the
assumption that ν is invertible can be relaxed. If ν →A U: is invertible where ⊂ U is an open interval that
contains zero, thenwe can just extend ν−1 fromU onto the real line by choosingν ν=−

∈
−u a( ) sup ( )a A

1 1 for

⩾u Usup and ν ν=−
∈

−u a( ) inf ( )a A
1 1 for ⩽u Uinf , or vice versa. Effectively this yields gradient dynamics

γ= ∂y t q y˙ ( ) ( )
*

y x with time-dependent parameter γ γ< ⩽t0 ( ) ,whichmaximizes q
*x . Thus, with the

assumptions on ν as above, control remains applicable. On the other hand, to determine themaximal
convergence speed, one has to to take other properties of ν into account.

The same gradient approach can be used to apply control to sufficiently smooth time-dependent control
targets. Even thoughwe have so far assumed x* to be constant, the control target can also be taken to be
piecewise constant, since the values at the discrete points of discontinuity do not change the integral. Therefore,
control is suitable for any time-dependent control target x t*( ) that can be approximated by piecewise constant
functions. Of course, convergence to a time-dependent control target will only be approximate, as control
ensures that themaximum is attained only in the limit as → ∞t .

To control chimeras, we apply this general control scheme to the absolute value R of the local-order
parameter. Since it encodes the local level of synchrony, a dynamics thatmaximizes the local-order parameter
throughR-traveling chimera solutions yields a chimeramoving to a specified target position.Note that

Figure 1.The local-order parameter ϕR x( , ) encodes the spatial position of a chimera state in a ring of =N 256 oscillators. Non-local
coupling is given by the exponential kernel h0; see (8). As a function of the oscillator phase ϕ x( )on the circleS (top panel), the
maximumof R indicates the center of the synchronized region, theminimum the position of the incoherent part (bottompanel).

3
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φ =R x r x( , ) ( )t of a chimera stateφt is stationary [8, 44], so it isR-traveling at a constant speed zero.Herewe
further assume that there is a family of coupling kernels ha that leads toR-traveling solutions at nonzero speed
ν a( ). The control parameter dynamics (4) for the observable R is

ν γ φ= − ∂−a t R x( ) ( , ) . (5)
*

x t x

1
⎛
⎝⎜

⎞
⎠⎟

Hence, choosing a time-dependent control parameter a according to (5) is equivalent to gradient dynamics to
maximize the local-order parameter at x*. For the original chimeraswith a single coherent region [7, 8], i.e.,
whereRhas a globalmaximum, the limiting position of a chimera subject to control is unique. For chimera
states withmultiple coherent regions [20, 44], the local-order parameter will attain a localmaximumat the
target position.

4. Implementation infinite dimensional rings

Most real-world systems consist of a finite number of oscillators; we thus implement chimera control in an
approximation of the continuous equations (1) by a systemofN phase oscillators. Let ι =k k N( ) be the
position of the kth oscillator on the ringS. Letω ∈ k be the intrinsic frequency of each oscillator. Initially we
assume that the oscillator system is homogeneous, i.e.,ω ω=k for all = …k N1, , .The temporal evolution of
each oscillator is given by

∑φ ω ι ι φ φ α= − − +
=

)N
h d k j˙

1
( ( ( ), ( ))) sin ( (6)k k

j

N

k j
1

for = …k N1, , . Here, = − + −( )( )d x y x y( , ) mod 11

2

1

2
is a signed distance function onS. The local-

order parameter of the discretized system is defined forφ φ φ= … ∈ T( , , )N
N

1 as

∑φ ι φ=
=

( )Z x
N

h d x j( , )
1

( ( , ( ))) exp i (7)
j

N

jd

1

and its absolute value φR x( , )d encodes the local level of synchrony; see figure 1.
To implement the chimera control scheme (4), the assumptionof amonotonic relationship νbetween a

systemparameter and the chimera’s drift speed has to be satisfied.Asymmetric coupling kernelsmay inducedrift
indynamical systemson a continuum, such as standard pattern-forming systems [14, 45, 46].Weemploy the
recent observation that breaking the symmetry of the coupling kernel slightly also results in the drift of the
chimeras infinite-dimensional systems [47]. The result is amonotonic relationshipν a( )between asymmetry and
drift speed [47], independent of the system’s dimension.Herewe consider a family of exponential coupling kernels

κ
κ

=
− − <
− + ⩾

h x
a x x

a x x
( )

exp( (1 ) ) if 0

exp( (1 ) ) if 0
(8)a

⎧⎨⎩
for ∈ −a ( 1, 1), where a determines the symmetry of the coupling kernel. The coupling in (8) can be analytically
related to oscillators coupled in reactive-diffusivemedia [48] subject to convective concentration gradients of
the couplingmedium. For sufficiently small ⪅a 0.015, the relationship ν between drift and asymmetry is
approximately linear at =a 0, and the resulting drifting chimeras are in good approximationR-travelingwith a
constant speed.We use this single observation for the implementation of chimera control. Note the particular
shape of ha is not crucial for control, since other asymmetric coupling kernels also lead to drift. However, the
topic of drifting chimera states in systemswith asymmetric coupling kernels deserves a treatment in its own
right, andwe refer to a forthcoming article [47] for details.

The relationship between asymmetry parameter a and the drift speed now allows for a straightforward
implementation of the control scheme. The control rule (5) acts as feedback control through the asymmetry
parameter. If the chimera is off target, the nonzero asymmetry yields a drift of the chimera towards the target
according to the derivative of the local-order parameter at the target position.Once the target is approached, the
control subsequently reduces the asymmetry and acts as a corrective term, keeping the chimera on target. For the
finite ring, a discrete derivative at ∈x S* can be defined for a given δ ∈ (0, 0.5)by

Δ φ
δ

δ φ δ φ= + − −δ ( )( ) ( )R x t R x t R x t( , ( ))
1

2 * , ( ) * , ( ) . (9)
*x d d d

For small δwehave Δ φ φ≈ ∂ ∣δ R x t R x t( , ( )) ( , ( ))
* *x x xd d .We employ the sigmoidal function

λ = + − −−x x( ) 2(1 exp ( )) 11 to ensure an upper bound >a 0max for the asymmetry parameter a t( ) to

4
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prevent chimeras frombreaking down. Let >K 0 be a constant. Given a target position ∈x S* , an
approximation of (5) for control is

λ Δ φ= δ( )a t a K R x t( ) ( , ( )) (10)
*xmax d

where K can be determined from the gradient control parameter γ ν= ′K (0). These dynamics willmaximize the
local-order parameter at x*. In other words, a chimeraφ t( )willmove along the ring until its synchronized part
is centered at x*.

Solving the dynamical equations subject to control numerically shows that the chimera adjusts to the
imposed target position. Figure 2 shows a simulation for =N 256 phase oscillators withK=100 and a time-
dependent target position x t* ( ). The simulation is carried outwith initial conditions as in [8] and an adaptive
integration step tomeet standard error tolerances.We discretized (10) in time by keeping the asymmetry
parameter piecewise constant with an update every Δ =t 1 time unit. The chimera tracks the changes of the
target position and adjusts tomatch new control targets.

Effectively, the control can be seen as a coupling of the dynamical equations to a function of the local-order
parameter. In contrast to systemswith symmetric-order parameter-dependent interaction [49, 50], in chimera
control the order parameter induces a time-dependent asymmetry (5) to the nonlocal coupling to realize
directedmotion [47]. As a result, the chimera drifts along a subspace defined by the symmetry of the
uncontrolled system to achieve the target position.

5. Control offluctuations

Anuncontrolled chimerawill exhibit pseudo-random (low-number) fluctuations [28] along the ringS that
persist evenwhen the symmetry of the system is broken. These fluctuations are particularly strong for small
numbers of oscillators. Since chimera control acts as a feedbackmechanism to correct deviations from the target
position, it counteracts the fluctuations along the ring. Thus, the control scheme keeps a chimera localized at a
target position even in low-dimension systems, despite the strong spatial fluctuations for a small number of
oscillators; see figure 3 (top).

To quantify how chimera control suppresses the pseudo-random fluctuations, we tracked the center of the
coherent region ∈x t S( )c in a homogeneous ring.More specifically, for a given initial conditionφ (0) for (6)
with initial position x (0),c wefirst solved the uncontrolled systemnumerically to obtain themean μU and
standard deviationσU ofd x x t( (0), ( ))c c over T time units. Similarly, one obtains μC and σC for the controlled
chimerawith =x x* (0)c as the target position. Averages overmultiple runs are shown infigure 3. Applying
control keeps the average position of the chimera on target for ⩾N 30 (the standard deviation is below a single
oscillator).Moreover, the fluctuations of the chimeras’ positions are greatly reduced for allN. Hence, control
renders the spatial position of a chimera usable evenwhen the number of oscillators is small.

6. Control for inhomogeneous rings

For control to be relevant in real-world applications, it has to be robust to inhomogeneities in the system. So far
we have considered the case of homogeneous rings where all oscillators have the same intrinsic frequency

Figure 2.The position of the chimera adjusts to the imposed target for the control scheme applied to a ring of =N 256 oscillators. The
top panels shows the phase evolution in the co-rotating frame, defined by the phase in the synchronized regionwithmaximal order
parameter. The black line is the target position. The bottompanels depict the asymmetry parameter a t( ) bounded by =a 0.015max ;
see (10).Once the target position is reached, a stays close to zero.
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ω ω=k for = …k N1, , . In fact, when all oscillators are identical, the ring has a rotational symmetrywhere the
symmetry group acts by translations along the ring. Control allows us to shift a chimera along the orbit of the
associated symmetry operation. Chimera states persist if the rotational symmetry is broken by choosing
nonidentical frequencies; i.e. , chimera solutions can be continuedwhile adiabatically increasing heterogeneity
[51]. Assume nonidentical intrinsic frequenciesω η= +1k k, where ηk are independently sampled from a
normal distribution centered at zerowith standard deviation σω. Chimeras can be observed for the
inhomogeneous ring forσ ⪅ω 0.03 before the chimeras break down. In contrast to homogeneous oscillators, a
chimera nowhas preferred positions on the inhomogeneous ring due to the lack of rotational symmetry, which
is determined by the actual value of the frequenciesωk.

Remarkably, control remains applicable for inhomogeneous rings of oscillators with distributed frequencies
ωk. Note that the control perturbations (4) are calculated from the averaged quantityR d. Thus, small
fluctuations induced by inhomogeneities average out. The resulting controlled chimera follows the imposed
target position even for comparatively large standard deviations of the frequency distribution; see figure 4. The
qualitative impact of control is the same as in homogeneous rings. However, if themaximal control parameter
amax is too small, even a controlled chimeramay get ‘stuck’whilemoving towards the target position.

Larger bounds for the control parameter a counteract this limitation induced by inhomogeneity. In fact,
control is not only robust to choosing >a 0.015,max but a sufficiently large value of amax allows a chimera to be
placed at an arbitrary position along any inhomogeneous ring.Moreover, the chimera attains its target position
quickly. Carrying out the same statistics as previously (i.e., as for assessing the control of pseudo random
fluctuations for homogeneous rings) reveals that for sufficiently large control parameters, the chimerawill stay
on arbitrary targets (not shown).Hence, control renders the spatial position of a chimera usable in both
homogeneous and inhomogeneous systems.

7. Functional chimera states

Control is essential to give chimera states persistent functionalmeaning. Chimera states arise in real physical
systems that are related to various technological applications. These include collections ofmechanical, (electro-)
chemical, and optical systems [9–12]. Chimera control now allows us to use the localized nature of a chimera
state for arbitrary novel applications in these contexts. As a simple example for a technological application of
chimera states, onemay envision a digital chimera computerwhere spatial location directly encodes
information.Note that as long as the number of oscillators is large enough, one is not limited to a digital
computer with just two states, but one could also consider an arbitrary number of states up to approximately

Figure 3.Top: control successfully suppresses pseudo-random finite sizefluctuations ( =N 30 oscillators) in low-dimensional rings.
Center: the average deviation μ μ,U C of a chimera from its initial position (straight lines in top panel) overT=3000 time units is
distributed around zerowithout control (gray) but on spot with control (black). Thin gray lines indicate a deviation of a single
oscillator. Bottom: control also reduces the fluctuations of the chimera due to pseudo-randommovement significantly, even for very
few oscillators ( ⩽N 30), as quantified byσ σ,U C. Points are slightly set off horizontally for legibility.

6
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encoding a continuous variable. Take two antipodal points ∈x x S,0 1 on the ring and say that the system is in
state 0 if a chimera is centered at x0 and in state 1 if it is centered at x1; see figure 5(a). Thus, in this setup, the
spatial position of a chimera encodes information.With active control this spatial encoding is reliable, because
there are no randomflips between states 0 and 1.Note that only a few oscillators are necessary to encode
information, because control reduces the pseudo-random fluctuations even in low-dimensional systems.

Control also allows us to change the value of the ‘bit’ dynamically to perform computations. If we take two
rings, ringA and ringB, and use themaximumof the order parameter of ringA (with phases given byφA) as the
target position x B

*
for ringB, the position of the chimera synchronizes.More explicitly,

Figure 4.Control of chimera states is successful even in heterogeneous rings of =N 256 oscillators, yielding qualitatively similar
results as for homogeneous rings. As infigure 2 the phase of the oscillators in the top panel is shown in a corotating frame. The
standard deviation of the oscillators’ frequencies is σ =ω 0.01. Note that control is robust to choosing larger bounds on themaximal
control parameter =a 0.05,max facilitating fast control and leading to faster convergence to the target position.

Figure 5. In a digital chimera computer, control allows for the spatial position of a chimera to encode information. A chimera located
at antipodal points x x,0 1 can, for example, encode bits (panel (a)). Here the angle denotes the spatial coordinate on the ringS, and the
radius the current phase; one obtains the torus by identifying the two boundary components of the annulus. By couplingmultiple
rings through control (black arrows), one can now realize computations in a chimera computer. The current position of a chimera is
given by φ= ∈R R x targ max ( , ( ))X

x
X

Smax d , ∈X A B{ , } (black triangles), and coupling between the rings (black arrows) is achieved
by the dependence of the control target (red triangles) x B

*
of ringB on the positionR A

max of the chimera on ringA; see (11).
Synchronization of position corresponds to copying bits (panel (b)), inversion of the position to aNOT gate (panel (c)).
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φ=
∈

( )x t R x t( ) arg max , ( ) , (11)
x

B

S

A
* d

is the target position for ringB,with dynamics given by (6) with coupling kernel (8) and control (10). In terms of
the chimera computer, this corresponds to an assignment ‘ =B A’ ormemory copy operation; see figure 5(b).
With theminimumof φR x( , )t

A as the target position, the resulting dynamics corresponds to aNOToperation;
see figure 5(c). By couplingmultiple rings, one can construct ANDandORgates in a similarmanner.Here the
dynamic target position (11) is given by a suitable function that depends on the stateφ t( )A . It would be desirable
to have a fast, efficient, and natural way to determine this target in particular implementations in the future, such
as using adaptive neural networks as a coincidence detector.

Localized dynamical states are directly related to function in neural and other biological networks
[25, 26, 52]. On the one hand, localized synchrony is generally regarded to play a role in, for example,memory
formation [53].On the other hand, localized activity at a particular location has beenwidely studied in spatially
continuous neural fieldmodels as bump states [13, 16]. Neural fieldmodels are related to classical pattern-
forming systems [54], and stationary localized solutions have been given functional interpretation in these
models, such as encoding the position of a rat’s head, which can bemodulated by inducing asymmetry in the
coupling [14, 55]. Chimera states in coupled oscillators relate to function both by local synchrony (the chimera’s
synchronized region) as well as by localized activity (rotating oscillatorsmake up the incoherent region of a
chimera). Chimeras and bump states have also been observed in various systems of neural oscillatory units with
both continuous coupling [18, 20, 21, 56] and pulse coupling [15, 22] and have been associatedwith short-term
memory [57]. Despite their apparent phenomenological similarities to bump states in classical neural field
models [58], chimera states in coupled oscillators aremathematically different. Systems of individual coupled
oscillators showmultistability of chimeras and the fully synchronized state [7, 15], and the oscillators rotate
rigidly. Thus,field equations directly derived from collections of oscillators contain phase information [56],
which is crucial to describe synchronization. On the other hand, activity described in neuralfieldmodels with
just a single variable does not contain any phase information, whereas the coupling in systems exhibiting
chimeras has a phase synchronizing effect.

If chimeras as localized states are a feature of biological networks, e.g., [15, 57], then control is one possible
mechanismbywhich information is robustly processed in these systems. Chimera control allows us both to
modulate the spatial position of a chimera state infinite dimensional systems and to keep it as a specified
location. In contrast to simple information encoding in spatially continuous rings [14]with nonautonomous
modulation, chimera control—as noninvasive feedback control—is a closed-loop systemwhere any target
position can be attained, evenwhen external input is not constantly available, structural constraints limit the
maximal asymmetry of the coupling, or the system is incapable of fully integrating the input. The control scheme
naturally acts as an error corrector that counteracts the diffusion of localized patterns in ensembles offinitely
many units [15, 28], thereby preventing information loss. Consequently, if even small networkswith control
exhibit the same structural robustness needed for computation in biological systems [52] as large networkswith
high redundancy [15, 59], wemay expect tofind some formof control in real biological systems.

8.Discussion

Chimera control allows the dynamicalmodulation of the spatial position of a chimera state in real time. Control
is possible, despite themultistability with the fully synchronized state, even in smallfinite-dimensional rings
with strong low-number fluctuations. In contrast to other recent applications of control to chimeras [29],
controlling the chimera as awhole is thefirst step towardsmaking use of chimera dynamics in practical
applications, as illustrated by the simple chimera computer. Apart from applications, control is relevant for
implementation in experimental setups. On the one hand, control can directly be applied to a number of the
current experimental realizations of chimera states such as [11, 12]. In these setups, implementation is
straightforward, since the coupling is computer-mediated. On the other hand, control remains applicable in
more general experimental contexts beyond computer-mediated coupling.Oscillatorsmay be coupled by
immersing them in a common reactive-diffusivemedium [48]. Subjecting themedium to an advective
concentration gradient (due to a sink or source)may give rise to an exponential coupling kernel (8): when the
time-scale characteristic of themedium is rapid compared to that of the oscillators, an adiabatic solution is
viable, yielding the asymmetric coupling (8); see [46–48]. Since a nonzero advective gradient yields an
asymmetric coupling, control can be realized bymodulating the strength of the gradient. Setupswith a common
mediumhave been studied in synthetic biologywhere oscillating cells communicate via quorum-sensing [60]
and can be subjected to advective currents [61]. Similar systems could be implemented using yeast cells under
glycolysis [62, 63], or diffusively coupled chemical oscillators inmicrofluidic assemblies [64, 65].Hence, we
anticipate our control strategy to alsofinddirect application in both technological and biological experimental
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setups. Controlmay also play an important role in natural biological settings, as already discussed in the section
above.

Remarkably, chimera control is robust with respect to perturbations of the system.Chimera states persist in
non-locally coupled rings of nonidentical oscillators [51, 66] and can be controlled; see figure 4. In fact, chimera
control acts in twoways. If the oscillators are (almost) identical, then control suppresses the finite size
fluctuations. Increasing inhomogeneity reduces fluctuations but also restricts uncontrolled chimeras to stable
locationswith respect tomovement along the ring S. Control eliminates this limitation for inhomogeneous
rings and allows chimeras to be placed at any position. This indicates that chimera control remains applicable in
more general oscillatormodels, for example, to suppress drift [15]. Note that our control is noninvasive in the
sense that the control signal vanishes on average upon attaining the target position; see equation (2). As a result,
chimera control is also robust with respect to larger values of the symmetry parameter a, yielding chimeras
which attain their target position very quickly, as indicated infigure 4.

The gradient-based control approach immediately extends to higher dimensional systems. The only
requirement for a successful implementation is the availability of an accessible control parameter that induces
drift. Preliminary numerical simulations indicate spiral wave chimeras [48, 67]; spiral waves with an incoherent
coremay exhibit spatial drift. Thus, an implementation of control for two-dimensional chimera states is within
direct reach. Gradient dynamics is a relatively naive control approach; here it serves as a proof of principle. Given
that there the asymmetry is an accessible control parameter and the local-order parameter an objective function,
onewould eventually like to seemore sophisticated control schemes implemented, for example, speed gradient
control [30].

In summary, chimera control is a robust control scheme to control the spatial position of a chimera state and
reliablymaintain its position, even for small numbers of oscillators thatmay be nonidentical. Note that chimera
control is not limited to the control of the position of the synchronized region of a chimera. The control scheme
presented heremay be applied if there is a relationship between a control parameter andQ-traveling solutions
for a suitable observableQ. Developing novel applications based on controlled chimeras, applying the presented
control scheme to experimental setups, and studying its relevance in biological settings provide exciting
directions for future research.
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