325 research outputs found

    Review of group A rotavirus strains reported in swine and cattle

    Get PDF
    Group A rotavirus (RVA) infections cause severe economic losses in intensively reared livestock animals, particularly in herds of swine and cattle. RVA strains are antigenically heterogeneous, and are classified in multiple G and P types defined by the two outer capsid proteins, VP7 and VP4, respectively. This study summarizes published literature on the genetic and antigenic diversity of porcine and bovine RVA strains published over the last 3 decades. The single most prevalent genotype combination among porcine RVA strains was G5P[7], whereas the predominant genotype combination among bovine RVA strains was G6P[5], although spatiotemporal differences in RVA strain distribution were observed. These data provide important baseline data on epidemiologically important RVA strains in swine and cattle and may guide the development of more effective vaccines for veterinary use

    Discovery and Genomic Characterization of Noroviruses from a Gastroenteritis Outbreak in Domestic Cats in the US

    Get PDF
    Norovirus (NoV) RNA was detected in the stools of 6 out 14 (42.8%) 8–12-week-old cats with enteritis from a feline shelter, in New York State. Upon sequence analysis of the complete capsid, the six NoVs were found to be identical, suggesting the spread of a unique NoV strain in the shelter. The full-length genomic sequence (7839 nt) of one feline NoV, CU081210E/2010/US, was determined. In the capsid protein VP1 region, the virus displayed the highest amino acid identity to animal genogroup IV genotype 2 (GIV.2) NoVs: lion/Pistoia-387/06/IT (97.9%) and dog/Bari-170/07/IT (90.4%). These findings document the discovery of a novel feline calicivirus, different from vesiviruses, and extend the spectrum of NoV host range. Epidemiological studies using feline NoV-specific diagnostic tools and experimental infection of cats are required to understand whether NoVs have a pathogenic role in this species

    Surveillance study of hepatitis E virus (HEV) in domestic and wild ruminants in northwestern Italy

    Get PDF
    In industrialized countries, increasing autochthonous infections of hepatitis E virus (HEV) are caused by zoonotic transmission of genotypes (Gts) 3 and 4, mainly through consumption of contaminated raw or undercooked pork meat. Although swine and wild boar are recognized as the main reservoir for Gt3 and Gt4, accumulating evidence indicates that other animal species, including domestic and wild ruminants, may harbor HEV. Herein, we screened molecularly and serologically serum and fecal samples from two domestic and four wild ruminant species collected in Valle d’Aosta and Piemonte regions (northwestern Italy. HEV antibodies were found in sheep (21.6%), goats (11.4%), red deer (2.6%), roe deer (3.1%), and in Alpine ibex (6.3%). Molecular screening was performed using different primer sets targeting highly conserved regions of hepeviruses and HEV RNA, although at low viral loads, was detected in four fecal specimens (3.0%, 4/134) collected from two HEV seropositive sheep herds. Taken together, the data obtained document the circulation of HEV in the geographical area assessed both in wild and domestic ruminants, but with the highest seroprevalence in sheep and goats. Consistently with results from other studies conducted in southern Italy, circulation of HEV among small domestic ruminants seems to occur more frequently than expected

    An outbreak of neonatal enteritis in buffalo calves associated with astrovirus

    Get PDF
    Background: Enteritis of an infectious origin is a major cause of productivity and economic losses to cattle producers worldwide. Several pathogens are believed to cause or contribute to the development of calf diarrhea. Astroviruses (AstVs) are neglected enteric pathogens in ruminants, but they have recently gained attention because of their possible association with encephalitis in humans and various animal species, including cattle. Objectives: This paper describes a large outbreak of neonatal diarrhea in buffalo calves (Bubalus bubalis), characterized by high mortality, which was associated with an AstV infection. Methods: Following an enteritis outbreak characterized by high morbidity (100%) and mortality (46.2%) in a herd of Mediterranean buffaloes (B. bubalis) in Italy, 16 samples from buffalo calves were tested with the molecular tools for common and uncommon enteric pathogens, including AstV, kobuvirus, and torovirus. Results: The samples tested negative for common enteric viral agents, including Rotavirus A, coronavirus, calicivirus, pestivirus, kobuvirus, and torovirus, while they tested positive for AstV. Overall, 62.5% (10/16) of the samples were positive in a single round reverse transcription polymerase chain reaction (PCR) assay for AstV, and 100% (16/16) were positive when nested PCR was performed. The strains identified in the outbreak showed a clonal origin and shared the closest genetic relationship with bovine AstVs (up to 85% amino acid identity in the capsid). Conclusions: This report indicates that AstVs should be included in a differential diagnosis of infectious diarrhea in buffalo calves

    PO-435 Photoactivation of nanoparticles delivered by mesenchymal stem cells induces osteosarcoma cell death in in vitro 3D co-culture models

    Get PDF
    Introduction Osteosarcoma (OS) is a rare and aggressive tumour that mainly affects long bones of adolescents. Currently, OS patients are treated with a combination of multi-agent chemotherapy and surgery. However, 30% of patients do not respond to standard treatment. Therefore, innovative therapeutic agents are needed. Mesenchymal stem cells (MSCs) display a specific tumour-tropism and have been previously used in successful preclinical studies to deliver several therapeutic agents. Furthermore, the safety of genetically engineered MSCs was demonstrasted in ongoing clinical trial. The goal of the present study was to test in vitro whether MSCs could uptake photoactivable nanoparticles (NPs) and induce cell death of OS cells upon photoactivation. Material and methods Ptl@PMMA NPs were produced by adding tetrasulfonate aluminium phthalocyanine (Ptl) to an aqueous solution of positively charged poly-methylmethacrylate (PMMA) nanoparticles. The photosensitizer Ptl is activated in near-infrared light allowing a deep tissue penetration. Human MSC lines, isolated from the bone marrow of multiple donors, were loaded with Ptl@PMMA NPs. The MSCs' ability to internalise and retain NPs, along with their migratory properties, were tested. Cell death upon photoactivation (PDT) was evaluated in vitro, on a monolayer co-culture of MSCs and OS cells and in 3D multicellular spheroids, generated via cell suspension in ultralow attachment plates Results and discussions MSCs showed an internalisation rate of Plt@PMMA>95%, which did not alter cell viability and migratory capacity. When Ptl@PMMA-MSCs were co-cultured with a human OS cell line (SaOS-2) in monolayers, they efficiently triggered cell death upon PDT. In particular, AnnexinV/PI and CalceinAM/EthD staining showed 70% of cell death in the co-culture system. These results were also validated by a metabolic assay. Interestingly, in a 3D co-culture of the OS cell line MG63 and Ptl@PMMA-MSCs, we observed a marked reduction of the viability ( Conclusion For the first time, we demonstrated that photoactivation of MSCs loaded with Ptl@PMMA NPs can successfully induce OS cell death in a three-dimensional OS model. These results encourage further in vivo evaluation to demonstrate the specific targeting of Plt@PMMA loaded MSCs to the tumour stroma and the efficacy of PDT treatmen

    Distinct lineages of feline parvovirus associated with epizootic outbreaks in Australia, New Zealand and the United Arab Emirates

    Get PDF
    Feline panleukopenia (FPL), a frequently fatal disease of cats, is caused by feline parvovirus (FPV) or canine parvovirus (CPV). We investigated simultaneous outbreaks of FPL between 2014 and 2018 in Australia, New Zealand and the United Arab Emirates (UAE) where FPL outbreaks had not been reported for several decades. Case data from 989 cats and clinical samples from additional 113 cats were obtained to determine the cause of the outbreaks and epidemiological factors involved. Most cats with FPL were shelter-housed, 9 to 10 weeks old at diagnosis, unvaccinated, had not completed a primary vaccination series or had received vaccinations noncompliant with current guidelines. Analysis of parvoviral VP2 sequence data confirmed that all FPL cases were caused by FPV and not CPV. Phylogenetic analysis revealed that each of these outbreaks was caused by a distinct FPV, with two virus lineages present in eastern Australia and virus movement between different geographical locations. Viruses from the UAE outbreak formed a lineage of unknown origin. FPV vaccine virus was detected in the New Zealand cases, highlighting the difficulty of distinguishing the co-incidental shedding of vaccine virus in vaccinated cats. Inadequate vaccination coverage in shelter-housed cats was a common factor in all outbreaks, likely precipitating the multiple re-emergence of infection events
    • …
    corecore