40 research outputs found

    Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies

    Centrality of Striatal Cholinergic Transmission in Basal Ganglia Function

    Get PDF
    Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction. Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson's disease and dystonia. Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders

    Welcome to the new open access NeuroSci

    Get PDF
    With sincere satisfaction and pride, I present to you the new journal, NeuroSci, for which I am pleased to serve as editor-in-chief. To date, the world of neurology has been rapidly advancing, NeuroSci is a cross-disciplinary, open-access journal that offers an opportunity for presentation of novel data in the field of neurology and covers a broad spectrum of areas including neuroanatomy, neurophysiology, neuropharmacology, clinical research and clinical trials, molecular and cellular neuroscience, neuropsychology, cognitive and behavioral neuroscience, and computational neuroscience. Members of our editorial board will welcome the contributions in this wide field of neurosciences. The following are welcome messages from some editorial board members

    Optogenetic Activation of Striatopallidal Neurons Reveals Altered HCN Gating in DYT1 Dystonia

    Get PDF
    Summary: Firing activity of external globus pallidus (GPe) is crucial for motor control and is severely perturbed in dystonia, a movement disorder characterized by involuntary, repetitive muscle contractions. Here, we show that GPe projection neurons exhibit a reduction of firing frequency and an irregular pattern in a DYT1 dystonia model. Optogenetic activation of the striatopallidal pathway fails to reset pacemaking activity of GPe neurons in mutant mice. Abnormal firing is paralleled by alterations in motor learning. We find that loss of dopamine D2 receptor-dependent inhibition causes increased GABA input at striatopallidal synapses, with subsequent downregulation of hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. Accordingly, enhancing in vivo HCN channel activity or blocking GABA release restores both the ability of striatopallidal inputs to pause ongoing GPe activity and motor coordination deficits. Our findings demonstrate an impaired striatopallidal connectivity, supporting the central role of GPe in motor control and, more importantly, identifying potential pharmacological targets for dystonia

    Dietary Vitamin E as a Protective Factor for Parkinson's Disease: Clinical and Experimental Evidence

    Get PDF
    Effective disease-modifying treatments are an urgent need for Parkinson's disease (PD). A putative successful strategy is to counteract oxidative stress, not only with synthetic compounds, but also with natural agents or dietary choices. Vitamin E, in particular, is a powerful antioxidant, commonly found in vegetables and other components of the diet. In this work, we performed a questionnaire based case-control study on 100 PD patients and 100 healthy controls. The analysis showed that a higher dietary intake of Vitamin E was inversely associated with PD occurrence independently from age and gender (OR = 1.022; 95% CI = 0.999–1.045; p < 0.05), though unrelated to clinical severity. Then, in order to provide a mechanistic explanation for such observation, we tested the effects of Vitamin E and other alimentary antioxidants in vitro, by utilizing the homozygous PTEN-induced kinase 1 knockout (PINK1−/−) mouse model of PD. PINK1−/− mice exhibit peculiar alterations of synaptic plasticity at corticostriatal synapses, consisting in the loss of both long-term potentiation (LTP) and long-term depression (LTD), in the absence of overt neurodegeneration. Chronic administration of Vitamin E (alpha-tocopherol and the water-soluble analog trolox) fully restored corticostriatal synaptic plasticity in PINK1−/− mice, suggestive of a specific protective action. Vitamin E might indeed compensate PINK1 haploinsufficiency and mitochondrial impairment, reverting some central steps of the pathogenic process. Altogether, both clinical and experimental findings suggest that Vitamin E could be a potential, useful agent for PD patients. These data, although preliminary, may encourage future confirmatory trials

    Impaired dopamine- and adenosine-mediated signaling and plasticity in a novel rodent model for DYT25 dystonia

    Get PDF
    Abstract Dystonia is a neurological movement disorder characterized by sustained or intermittent involuntary muscle contractions. Loss-of-function mutations in the GNAL gene have been identified to be the cause of "isolated" dystonia DYT25. The GNAL gene encodes for the guanine nucleotide-binding protein G(olf) subunit alpha (Gαolf), which is mainly expressed in the olfactory bulb and the striatum and functions as a modulator during neurotransmission coupling with D1R and A2AR. Previously, heterozygous Gαolf -deficient mice (Gnal+/−) have been generated and showed a mild phenotype at basal condition. In contrast, homozygous deletion of Gnal in mice (Gnal−/−) resulted in a significantly reduced survival rate. In this study, using the CRISPR-Cas9 system we generated and characterized heterozygous Gnal knockout rats (Gnal+/−) with a 13 base pair deletion in the first exon of the rat Gnal splicing variant 2, a major isoform in both human and rat striatum. Gnal+/− rats showed early-onset phenotypes associated with impaired dopamine transmission, including reduction in locomotor activity, deficits in rotarod performance and an abnormal motor skill learning ability. At cellular and molecular level, we found down-regulated Arc expression, increased cell surface distribution of AMPA receptors, and the loss of D2R-dependent corticostriatal long-term depression (LTD) in Gnal+/− rats. Based on the evidence that D2R activity is normally inhibited by adenosine A2ARs, co-localized on the same population of striatal neurons, we show that blockade of A2ARs restores physiological LTD. This animal model may be a valuable tool for investigating Gαolf function and finding a suitable treatment for dystonia associated with deficient dopamine transmission

    Molecular Mechanisms of Synaptic Plasticity: Dynamic Changes in Neuron Functions

    No full text
    The human brain has hundreds of billions of neurons and at least 7 million dendrites have been hypothesized to exist for each neuron, with over 100 trillion neuron–neuron, neuron–muscle, and neuron–endocrine cell synapses [...

    Molecular Mechanisms of Synaptic Plasticity 2.0: Dynamic Changes in Neurons Functions, Physiological and Pathological Process

    No full text
    Due to the success of the first Special Issue on synaptic plasticity, I endeavored to promote a new Special Issue with an emphasis on dynamic changes in neuronal functions and physiological and pathological processes [...

    Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission

    No full text
    Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments
    corecore