6,450 research outputs found
Feedback and its Feedback Effect on Feedback: Photoionization Suppression and its Impact on Galactic Outflows
We show that radiative feedback due to reionization has a pronounced effect
on the extent of mechanical feedback due to galactic outflows. The
photoionization of the Intergalactic Medium (IGM) suppresses low-mass galaxy
formation by photoheating the gas and limiting atomic line cooling. The number
of low-mass galaxies is central for the enrichment of the IGM as these objects
have the capacity to enrich a significant fraction (by volume) of the Universe.
We use a modified version of our galactic outflow model, combined with a simple
criterion for suppression, to investigate the potential impact upon the IGM. We
find that this suppression strongly reduces the enrichment of the IGM and is
sensitive to the reionization history. We also investigate the contribution of
halos of different masses with varying degrees of suppression.Comment: 4 pages, 3 figures, class file included, accepted by ApJ Letters,
minor changes and expanded Figure
Description of the inelastic collision of two solitary waves for the BBM equation
We prove that the collision of two solitary waves of the BBM equation is
inelastic but almost elastic in the case where one solitary wave is small in
the energy space. We show precise estimates of the nonzero residue due to the
collision. Moreover, we give a precise description of the collision phenomenon
(change of size of the solitary waves).Comment: submitted for publication. Corrected typo in Theorem 1.
Anisotropic Outflows and IGM Enrichment
We have designed an analytical model for the evolution of anisotropic
galactic outflows. These outflows follow the path of least resistance, and thus
travel preferentially into low-density regions, away from cosmological
structures where galaxies form. We show that anisotropic outflows can
significantly enrich low-density systems with metals.Comment: Proceedings of Chemodynamics 2006, Lyon, 2 pages, 1 figure, style
file include
Anisotropic Galactic Outflows and Enrichment of the Intergalactic Medium. I: Monte Carlo Simulations
We have developed an analytical model to describe the evolution of
anisotropic galactic outflows. With it, we investigate the impact of varying
opening angle on galaxy formation and the evolution of the IGM. We have
implemented this model in a Monte Carlo algorithm to simulate galaxy formation
and outflows in a cosmological context. Using this algorithm, we have simulated
the evolution of a comoving volume of size [12h^(-1)Mpc]^3 in the LCDM
universe. Starting from a Gaussian density field at redshift z=24, we follow
the formation of ~20,000 galaxies, and simulate the galactic outflows produced
by these galaxies. When these outflows collide with density peaks, ram pressure
stripping of the gas inside the peak may result. This occurs in around half the
cases and prevents the formation of galaxies. Anisotropic outflows follow the
path of least resistance, and thus travel preferentially into low-density
regions, away from cosmological structures (filaments and pancakes) where
galaxies form. As a result, the number of collisions is reduced, leading to the
formation of a larger number of galaxies. Anisotropic outflows can
significantly enrich low-density systems with metals. Conversely, the
cross-pollution in metals of objects located in a common cosmological
structure, like a filament, is significantly reduced. Highly anisotropic
outflows can travel across cosmological voids and deposit metals in other,
unrelated cosmological structures.Comment: 32 pages, 9 figures (2 color). Revised version accepted in Ap
Dynamics of a hyperbolic system that applies at the onset of the oscillatory instability
A real hyperbolic system is considered that applies near the onset of the oscillatory instability in large spatial domains. The validity of that system requires that some intermediate scales (large compared with the basic wavelength of the unstable modes but small compared with the size of the system) remain inhibited; that condition is analysed in some detail. The dynamics associated with the hyperbolic system is fully analysed to conclude that it is very simple if the coefficient of the cross-nonlinearity is such that , while the system exhibits increasing complexity (including period-doubling sequences, quasiperiodic transitions, crises) as the bifurcation parameter grows if ; if then the system behaves subcritically. Our results are seen to compare well, both qualitatively and quantitatively, with the experimentally obtained ones for the oscillatory instability of straight rolls in pure Rayleigh - Bénard convection
Stable self-similar blow-up dynamics for slightly -supercritical generalized KdV equations
In this paper we consider the slightly -supercritical gKdV equations
, with the nonlinearity
and . We will prove the existence and
stability of a blow-up dynamic with self-similar blow-up rate in the energy
space and give a specific description of the formation of the singularity
near the blow-up time.Comment: 38 page
The Spatial Distribution of the Galactic First Stars II: SPH Approach
We use cosmological, chemo-dynamical, smoothed particle hydrodynamical
simulations of Milky-Way-analogue galaxies to find the expected present-day
distributions of both metal-free stars that formed from primordial gas and the
oldest star populations. We find that metal-free stars continue to form until
z~4 in halos that are chemically isolated and located far away from the biggest
progenitor of the final system. As a result, if the Population III initial mass
function allows stars with low enough mass to survive until z=0 (< 0.8 Msol),
they would be distributed throughout the Galactic halo. On the other hand, the
oldest stars form in halos that collapsed close to the highest density peak of
the final system, and at z=0 they are located preferentially in the central
region of the Galaxy, i.e., in the bulge. According to our models, these trends
are not sensitive to the merger histories of the disk galaxies or the
implementation of supernova feedback. Furthermore, these full hydrodynamics
results are consistent with our N-body results in Paper I, and lend further
weight to the conclusion that surveys of low-metallicity stars in the Galactic
halo can be used to directly constrain the properties of primordial stars. In
particular, they suggest that the current lack of detections of metal-free
stars implies that their lifetimes were shorter than a Hubble time, placing
constraints on the metal-free initial mass function.Comment: Accepted by ApJ. Emulate ApJ styl
Using environmental DNA and occupancy modeling to estimate rangewide metapopulation dynamics of the endangered tidewater goby eucyclogobius spp.
Conservation of species is most effective when metapopulation dynamics are well understood and incorporated into management plans, allowing managers to target conservation efforts where they will be most effective. The development of environmental DNA (eDNA) methods provides an efficient and highly sensitive approach to generate presence and absence data needed to elucidate metapopulation dynamics. Combining sample detection histories from eDNA surveys with occupancy models that account for non-detection can offer unbiased estimates of rangewide metapopulation dynamics. However, traditional occupancy models do not allow direct evaluation of the drivers of site occupancy, extinction, and colonization. Herein, I utilize a novel dynamic multiscale occupancy model that accounts for non-detection to estimate rangewide metapopulation dynamics and their drivers in an endangered fish, tidewater goby Eucyclogobius spp., a genus endemic to California estuarine habitats. I collected rangewide eDNA data from 190 sites (813 total water samples) surveyed from two years (2016 and 2017) and analyzed the data using a dynamic multiscale occupancy model. Rangewide, estimates of the proportion of sites that were occupied varied little between 2016 (0.524) and 2017 (0.517). Although I uncovered stability in the number of sites that were occupied across the two study years, there was evidence for extinction and colonization dynamics. Rangewide estimates of extinction probability of occupied sites (0.106) and colonization probability of unoccupied sites (0.085) were nearly equal. The consistent rangewide occupancy proportions combined with the presence of extinctions and colonization suggests a dynamic equilibrium between the two years surveyed. There was no latitudinal gradient or regional differences in extinction and colonization dynamics across the tidewater goby geographic range. Assessment of covariate effects on metapopulation dynamics revealed that colonization probability increased as the number of occupied neighboring sites increased and as distance between occupied sites decreased. I show that eDNA surveys can rapidly provide a snapshot of a species distribution over a broad geographic range, and when these surveys are paired with dynamic multiscale occupancy modeling, they can uncover rangewide and regional scale metapopulation dynamics and their drivers
- …