7 research outputs found

    Microbial Community Structures of Novel Icelandic Hot Spring Systems Revealed by PhyloChip G3 Analysis

    Get PDF
    Microbial community profiles of recently formed hot spring systems ranging in temperatures from 57掳C to 100掳C and pH values from 2 to 4 in Hverager冒i (Iceland) were analyzed with PhyloChip G3 technology. In total, 1173 bacterial operational taxonomic units (OTUs) spanning 576 subfamilies and 38 archaeal OTUs covering 32 subfamilies were observed. As expected, the hyperthermophilic (100掳C) spring system exhibited both low microbial biomass and diversity when compared to thermophilic (60掳C) springs. Ordination analysis revealed distinct bacterial and archaeal diversity in geographically distinct hot springs. Slight variations in temperature (from 57掳C to 64掳C) within the interconnected pools led to a marked fluctuation in microbial abundance and diversity. Correlation and PERMANOVA tests provided evidence that temperature was the key environmental factor responsible for microbial community dynamics, while pH, H_(2)S, and SO_2 influenced the abundance of specific microbial groups. When archaeal community composition was analyzed, the majority of detected OTUs correlated negatively with temperature, and few correlated positively with pH. Key Words: Microbial diversity鈥擯hyloChip G3鈥擜cidophilic鈥擳hermophilic鈥擧ot springs鈥擨celand. Astrobiology 14, xxx鈥搙xx

    Improved sampling and DNA extraction procedures for microbiome analysis in food-processing environments

    Get PDF
    [EN] Deep investigation of the microbiome of food-production and foodprocessing environments through whole-metagenome sequencing (WMS) can provide detailed information on the taxonomic composition and functional potential of the microbial communities that inhabit them, with huge potential benefits for environmental monitoring programs. However, certain technical challenges jeopardize the application of WMS technologies with this aim, with the most relevant one being the recovery of a sufficient amount of DNA from the frequently low-biomass samples collected from the equipment, tools and surfaces of food-processing plants. Here, we present the first complete workflow, with optimized DNA-purification methodology, to obtain high-quality WMS sequencing results from samples taken from food-production and food-processing environments and reconstruct metagenome assembled genomes (MAGs). The protocol can yield DNA loads >10 ng in >98% of samples and >500 ng in 57.1% of samples and allows the collection of, on average, 12.2 MAGs per sample (with up to 62 MAGs in a single sample) in ~1 week, including both laboratory and computational work. This markedly improves on results previously obtained in studies performing WMS of processing environments and using other protocols not specifically developed to sequence these types of sample, in which <2 MAGs per sample were obtained. The full protocol has been developed and applied in the framework of the European Union project MASTER (Microbiome applications for sustainable food systems through technologies and enterprise) in 114 food-processing facilities from different production sectors.SIThis work was funded by the European Commission under the European Union鈥檚 Horizon 2020 research and innovation program under grant agreement no. 818368 (MASTER). C.B. is grateful to Junta de Castilla y Le贸n and the European Social Fund for awarding her a pre-doctoral grant (BOCYL-D-07072020-6). A.P. is grateful to Ministerio de Ciencia e Innovaci贸n for awarding her a pre-doctoral grant (PRE2021-098910). N.M.Q. is currently funded by the European Union鈥檚 Horizon 2020 research and innovation programme under the Marie Sk艂odowska-Curie grant agreement no. 101034371. We thank AV Star Systems for their role in creating the Supplementary Video, and M. Coakley and S. Mortensen for their help in its preparation

    Thermoactinoamide A, an Antibiotic Lipophilic Cyclopeptide from the Icelandic Thermophilic Bacterium Thermoactinomyces vulgaris

    No full text
    The thermophilic bacterium Thermoactinomyces vulgaris strain ISCAR 2354, isolated from a coastal hydrothermal vent in Iceland, was shown to contain thermoactinoamide A (1), a new cyclic hexapeptide composed of mixed d and l amino acids, along with five minor analogues (2-6). The structure of 1 was determined by one- and two-dimensional NMR spectroscopy, high-resolution tandem mass spectrometry, and advanced Marfey's analysis of 1 and of the products of its partial hydrolysis. Thermoactinoamide A inhibited the growth of Staphylococcus aureus ATCC 6538 with an MIC value of 35 渭M. On the basis of literature data and this work, cyclic hexapeptides with mixed d/l configurations, one aromatic amino acid residue, and a prevalence of lipophilic residues can be seen as a starting point to define a new, easily accessible scaffold in the search for new antibiotic agents

    Microbial communities in the subglacial waters of the Vatnajokull ice cap, Iceland

    No full text
    Subglacial lakes beneath the Vatnajokull ice cap in Iceland host endemic communities of microorganisms adapted to cold, dark and nutrient-poor waters, but the mechanisms by which these microbes disseminate under the ice and colonize these lakes are unknown. We present new data on this subglacial microbiome generated from samples of two subglacial lakes, a subglacial flood and a lake that was formerly subglacial but now partly exposed to the atmosphere. These data include parallel 16S rRNA gene amplicon libraries constructed using novel primers that span the v3-v5 and v4-v6 hypervariable regions. Archaea were not detected in either subglacial lake, and the communities are dominated by only five bacterial taxa. Our paired libraries are highly concordant for the most abundant taxa, but estimates of diversity (abundance-based coverage estimator) in the v4-v6 libraries are 3-8 times higher than in corresponding v3-v5 libraries. The dominant taxa are closely related to cultivated anaerobes and microaerobes, and may occupy unique metabolic niches in a chemoautolithotrophic ecosystem. The populations of the major taxa in the subglacial lakes are indistinguishable (>99% sequence identity), despite separation by 6 km and an ice divide; one taxon is ubiquitous in our Vatnajokull samples. We propose that the glacial bed is connected through an aquifer in the underlying permeable basalt, and these subglacial lakes are colonized from a deeper, subterranean microbiome. The ISME Journal (2013) 7, 427-437; doi:10.1038/ismej.2012.97; published online 13 September 201
    corecore