5 research outputs found

    Refined OPLS All-Atom Force Field Parameters for <i>n</i>‑Pentadecane, Methyl Acetate, and Dimethyl Phosphate

    No full text
    OPLS All-Atom (OPLS/AA) is a generic all-atom force field which was fine-tuned to accurately reproduce condensed phase properties of organic liquids. Its application in modeling of lipid membranes is, however, limited mainly due to the inability to correctly describe phase behavior and organization of the hydrophobic core of the model lipid bilayers. Here we report new OPLS/AA parameters for <i>n</i>-pentadecane, methyl acetate, and dimethyl phosphate anion. For the new force field parameters, we show very good agreement between calculated and numerous reference data, including liquid density, enthalpy of vaporization, free energy of hydration, and selected transport properties. The new OPLS/AA parameters have been used in successful submicrosecond MD simulations of bilayers made of bacterial glycolipids whose results will be published elsewhere shortly

    Refined OPLS All-Atom Force Field Parameters for <i>n</i>‑Pentadecane, Methyl Acetate, and Dimethyl Phosphate

    No full text
    OPLS All-Atom (OPLS/AA) is a generic all-atom force field which was fine-tuned to accurately reproduce condensed phase properties of organic liquids. Its application in modeling of lipid membranes is, however, limited mainly due to the inability to correctly describe phase behavior and organization of the hydrophobic core of the model lipid bilayers. Here we report new OPLS/AA parameters for <i>n</i>-pentadecane, methyl acetate, and dimethyl phosphate anion. For the new force field parameters, we show very good agreement between calculated and numerous reference data, including liquid density, enthalpy of vaporization, free energy of hydration, and selected transport properties. The new OPLS/AA parameters have been used in successful submicrosecond MD simulations of bilayers made of bacterial glycolipids whose results will be published elsewhere shortly

    Comparative Computer Simulation Study of Cholesterol in Hydrated Unary and Binary Lipid Bilayers and in an Anhydrous Crystal

    No full text
    Models created with molecular dynamics simulations are used to compare the organization and dynamics of cholesterol (Chol) molecules in three different environments: (1) a hydrated pure Chol bilayer that models the Chol bilayer domain, which is a pure Chol domain embedded in the bulk membrane; (2) a 2-palmitoyl-3-oleoyl-d-glycerol-1-phosphorylcholine bilayer saturated with cholesterol (POPC-Chol50) that models the bulk membrane; (3) a Chol crystal. The computer model of the hydrated pure Chol bilayer is stable on the microsecond time scale. Some structural characteristics of Chol molecules in the Chol bilayer are similar to those in the POPC-Chol50 bilayer (e.g., tilt of Chol rings and chains), while others are similar to those in Chol crystals (e.g., surface area per Chol, bilayer thickness). The key result of this study is that the Chol bilayer has, unexpectedly, a dynamic structure, with Chol mobility similar to that in the POPC-Chol50 bilayer though slower. This is the major difference compared to Chol crystals, where Chol molecules are immobile. Also, water accessibility to Chol–OH groups in the Chol bilayer is not limited. On average, each Chol molecule makes 2.3 hydrogen bonds with water in the Chol bilayer, compared with 1.7 hydrogen bonds in the POPC-Col50 bilayer

    Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration

    No full text
    We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree–Fock (HF), (2) second order Møller–Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM)

    Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration

    No full text
    We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree–Fock (HF), (2) second order Møller–Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM)
    corecore