14 research outputs found

    An Overview of Anodic Oxides Derived Advanced Nanocomposites Substrate for Surface Enhance Raman Spectroscopy

    Get PDF
    Surface-enhanced Raman spectroscopy (SERS) is an analytical technique, which allows to identify traces of chemical or biological substances in many field, like pharmaceutical and food industries, homeland security, nanosensors, or environmental protection. The analytes are identified based on their vibrational spectra, unique for a given compound. The advantage of SERS is effective qualitative analysis of trace amounts of analyte, but the disadvantages are stability of substrate and repeatability of measurements. The challenge is to improve SERS substrates to minimize these drawbacks. Nowadays high-precision electron beam lithography or focused ion beam is used in SERS substrate fabrication, which is impractical for large-scale production. In recent years, researchers’ attention has focused on porous anodic oxides, with inexpensive and scalable production method, as potential materials for SERS substrates. This chapter will discuss the progress of anodic oxides used as a SERS substrate, and the brief description of conventional SERS substrate fabrication methods will be presented

    Advanced Image Analysis of the Surface Pattern Emerging in Ni3Al Intermetallic Alloys on Anodization

    Get PDF
    Anodization of Ni3Al alloy is of interest in the field of industrial manufacturing, thanks to the formation of protective oxide layer on the materials working in corrosive environments and high temperatures. However, homogeneous surface treatment is paramount for technological applications of this material. The anodization conditions have to be set outside the ranges of corrosion and burning, which is the electric field enhanced anodic dissolution of the metal. In order to check against occurrence of these events, proper quantitative means for assessing the surface quality have to be developed and established. We approached this task by advanced analysis of scanning electron microscope images of anodized Ni3Al plates. The anodization was carried out in 0.3 M citric acid at two temperatures of 0 and 30°C and at voltages in the range of 2 12 V. Different figures can be used to characterize the quality of the surface, in terms of uniformity. Here, the concept of regularity ratio spread is used for the first time on surfaces of technological interest. Additionally, the Minkowski parameters have been calculated and their meaning is discussed

    Modification of Anodic Titanium Oxide Bandgap Energy by Incorporation of Tungsten, Molybdenum, and Manganese In Situ during Anodization

    No full text
    In this research, we attempted to modify the bandgap of anodic titanium oxide by in situ incorporation of selected elements into the anodic titanium oxide during the titanium anodization process. The main aim of this research was to obtain photoactivity of anodic titanium oxide over a broader sunlight wavelength. The incorporation of the selected elements into the anodic titanium oxide was proved. It was shown that the bandgap values of anodic titanium oxides made at 60 V are in the visible region of sunlight. The smallest bandgap value was obtained for anodic titanium oxide modified by manganese, at 2.55 eV, which corresponds to a wavelength of 486.89 nm and blue color. Moreover, it was found that the pH of the electrolyte significantly affects the thickness of the anodic titanium oxide layer. The production of barrier oxides during the anodizing process with properties similar to coatings made by nitriding processes is reported for the first time

    Application of Anodic Titanium Oxide Modified with Silver Nanoparticles as a Substrate for Surface-Enhanced Raman Spectroscopy

    No full text
    The formation of nanostructured anodic titanium oxide (ATO) layers was explored on pure titanium by conventional anodizing under two different operating conditions to form nanotube and nanopore morphologies. The ATO layers were successfully developed and showed optimal structural integrity after the annealing process conducted in the air atmosphere at 450 °C. The ATO nanopore film was thinner (1.2 +/− 0.3 ÎŒm) than the ATO nanotube layer (3.3 +/− 0.6 ÎŒm). Differences in internal pore diameter were also noticeable, i.e., 88 +/− 9 nm and 64 +/− 7 nm for ATO nanopore and nanotube morphology, respectively. The silver deposition on ATO was successfully carried out on both ATO morphologies by silver electrodeposition and Ag colloid deposition. The most homogeneous silver deposit was prepared by Ag electrodeposition on the ATO nanopores. Therefore, these samples were selected as potential surface-enhanced Raman spectroscopy (SERS) substrate, and evaluation using pyridine (aq.) as a testing analyte was conducted. The results revealed that the most intense SERS signal was registered for nanopore ATO/Ag substrate obtained by electrodeposition of silver on ATO by 2.5 min at 1 V from 0.05M AgNO3 (aq.) (analytical enhancement factor, AEF ~5.3 × 104) and 0.025 M AgNO3 (aq.) (AEF ~2.7 × 102). The current findings reveal a low-complexity and inexpensive synthesis of efficient SERS substrates, which allows modification of the substrate morphology by selecting the parameters of the synthesis process

    Morphological and semiconductive properties of the anodic oxide layers made on Fe3Al alloy by anodizing in tartaric-sulfuric acid mixture

    No full text
    Abstract It has recently been found that the anodizing of FeAl alloys allows the formation of iron-aluminum oxide layers with interesting semiconducting properties. However, the lack of systematic research on different anodizing regimes is hampering their full exploitation in numerous photoelectrochemical-related applications. This study address, for the first time, the systematic effect of the electrolyte composition on the formation of self-ordered oxide films by anodizing on cast Fe3Al alloy. The Fe3Al alloy was anodized in 3 electrolytes with different water-ethylene glycol (EG) ratios (pure water, 25 vol.%-EG, and 50 vol.%-EG solutions) at a constant tartaric-sulfuric acids concentration, different voltages (10–20 V) and treatment times (2–60 min). After anodizing, all anodic oxide layers were annealed at 900 °C to form semiconductive iron-aluminum crystalline phases. Conventional techniques were used to systematically ascertain the morphological (SEM/EDS, XRD, eddy-current measurements) and semiconductive (UV–VIS reflectance spectroscopy) properties of these oxide layers. The results confirmed the formation of homogeneous and self-ordered anodic oxide layers at 10 and 15 V, regardless of the electrolyte composition. Namely, anodic films formed in electrolytes containing EG showed lower pore sizes, growth rates, and film thicknesses than those anodic films formed in the aqueous-based electrolyte. The annealing post-treatment results in different Fe-Al oxides (FexOy, FeAl2O4, etc.) with superior band gap values than those for non-annealed films

    Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

    No full text
    Core–shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors. Hence, a simple titania coating method that would allow better control over the shell formation is desired. A sol–gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM). Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS) technique. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40–70 nm and 90 nm, for the Ag and Au nanostructures respectively, were prepared using a method we developed and adapted, consisting of a change in the titania precursor concentration. The synthesized nanostructures exhibited significant absorption in the UV–vis range. The TRPS technique was shown to be a very useful tool for the characterization of metal–metal oxide core–shell nanostructures

    Self-Organized Anodic Oxides on Titanium Alloys Prepared from Glycol- and Glycerol-Based Electrolytes

    No full text
    The anodization of commercially pure Ti alloy (99.5 wt %) and two biomedical titanium alloys, Ti6Al7Nb and Ti6Al4V, was performed, and the resulting anodic oxides were studied. The biomedical alloys were made by Laser Engineered Net Shaping. The glycol-based and glycerol-based electrolytes with 0.3 M ammonium fluoride and 2 wt % of deionized water content were tested. It was found that electrolyte type as well as the chemical composition of the base substrate affected the final morphology and chemical composition of the anodic oxide formed. A higher current density, ionic mobility, and oxide growth rate were obtained in glycol-based electrolyte as compared to those obtained in glycerol-based electrolyte for all tested alloys. A self-organized nanotubular and nanoporous morphology of the anodic oxide in both types of electrolyte was obtained. In each electrolyte, the alloy susceptibility to oxidation increased in the following order: Ti6Al4V < Ti 99.5% < Ti6Al7Nb, which can be correlated to the oxidation susceptibility of the base titanium alloy. It was observed that the more impurities/alloying elements in the substrate, the lower the pore diameters of anodic oxide. There was a higher observed incorporation of electrolyte species into the anodic oxide matrix in the glycerol-based electrolyte compared with that in glycol-based electrolyte
    corecore