13 research outputs found

    Non-proliferative neurogenesis in human periodontal ligament stem cells

    Get PDF
    Understanding the sequence of events from undifferentiated stem cells to neuron is not only important for the basic knowledge of stem cell biology, but also for therapeutic applications. In this study we examined the sequence of biological events during neural differentiation of human periodontal ligament stem cells (hPDLSCs). Here, we show that hPDLSCs-derived neural-like cells display a sequence of morphologic development highly similar to those reported before in primary neuronal cultures derived from rodent brains. We observed that cell proliferation is not present through neurogenesis from hPDLSCs. Futhermore, we may have discovered micronuclei movement and transient cell nuclei lobulation coincident to in vitro neurogenesis. Morphological analysis also reveals that neurogenic niches in the adult mouse brain contain cells with nuclear shapes highly similar to those observed during in vitro neurogenesis from hPDLSCs. Our results provide additional evidence that it is possible to differentiate hPDLSCs to neuron-like cells and suggest the possibility that the sequence of events from stem cell to neuron does not necessarily requires cell division from stem cell.This work was supported by the grants Institute of Health Carlos III (RD16/001/0010) and Spanish MICINN (SAF2014-59347-C2-1-R) and (SAF2017-83702-R).Peer reviewe

    Neurobiological bases of autism and cellular models for its experimental study

    Get PDF
    Autism Spectrum Disorders (ASD) are a functional alteration of the cerebral cortex, which presents structural neurodevelopmental anomalies that affect synaptic function and the pattern of connections within and between cortical columns. From its etiological aspect, ASD has an important genetic load, considering a polygenic disorder, derived from a combination of "de novo" genetic mutations, associated to a predisposition derived from common inherited variations. The main genetic anomalies associated with ASD involve genes that encode proteins of the synapse. Thus, in patients with ASD, alterations in the initial development of the synapses have been described in the connection circuits between complex processing cortical areas. The molecular complexity observed in the predisposition to develop an ASD, together with the diversity of structural phenotypes, has made animal models reproduce only partially the ASD. To advance in the experimental study it is therefore necessary to develop representative models, such as cellular models derived from human cells. In recent decades, the advances in stem cell biology give us a way to apply experimental paradigms in cells derived from individuals with ASD. Currently, induced pluripotent cells (IPs) derived from human adult cells allow deepening the study of molecular and cellular bases of the neuronal development in humans, as well as the anomalies in this development, which give rise to disorders such as ASD. However, they present inherent problems derived from the experimental manipulation that involves the reprogramming of gene expression, therefore other models are also been explored

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Desarrollo y plasticidad del cerebro

    No full text
    Los trastornos de neurodesarrollo están asociados a anomalías funcionales del cerebro que se manifiestan de forma temprana en la vida. Clásicamente se asociaban de manera casi exclusiva con la aparición de discapacidad intelectual y retraso en el desarrollo psicomotor. Las causas de estos trastornos se han descrito parcialmente, incluyendo anomalías por causas genéticas (síndrome de Down, X frágil, etc.), por exposición a factores tóxicos durante el embarazo (síndrome alcohólico fetal), infecciones (citomegalovirus, toxoplasmosis, etc.) o por otras alteraciones, entre las que cabe citar la gran inmadurez en el momento del nacimiento (grandes prematuros). Datos epidemiológicos apoyados en un mejor conocimiento de las enfermedades del sistema nervioso central indican que algunos trastornos mentales, que aparecen en la adolescencia o la madurez temprana, están originados también por anomalías del desarrollo cerebral. Esta revisión pretende dar una visión general del desarrollo cerebral. También se analizan algunos de los procesos celulares y moleculares que pueden explicar las similitudes y diferencias en los fenotipos que generan las alteraciones del desarrollo normal. Todo ello con el objetivo de identificar claramente los procesos sensibles a ser modificados con la actuación terapéutica de un programa de atención temprana.Peer reviewe

    The brain. An analogic machine with quantum functioning?

    No full text
    [ES]: La neurociencia moderna aborda el problema de funcionamiento global del cerebro para poder comprender los procesos neurobiológicos que subyacen a las funciones mentales, y especialmente, a la consciencia. La actividad cerebral está basada en el intercambio de información entre neuronas a través de contactos llamados sinapsis. Las neuronas forman redes de conexión entre ellas (circuitos), que están dedicados a procesar una parcela específica de información (visual, auditiva, motora…). Los circuitos establecen redes entre ellos, combinando diferentes modalidades de información para generar lo que conocemos como actividad mental. El estudio de las conexiones entre regiones corticales, que se ha llamado conectoma, está siendo abordado mediante técnicas de neuroimagen como la resonancia magnética nuclear, que aportan datos sobre la densidad de conexiones del cerebro. La capacidad del cerebro de crear nuevas conexiones en función de la experiencia (plasticidad cerebral), sugiere que el conectoma es una estructura dinámica en constante interacción con estímulos externos e internos. La pregunta sobre si el conocimiento del conectoma de un individuo nos per mitiría predecir su conducta parece que todavía no tiene respuesta clara, porque no conocemos los parámetros físicos que ligan la complejidad de las conexiones del cerebro con la aparición de las funciones mentales y de la consciencia. Por el momento, parece que la compleja e impredecible conducta no es el simple resultado de procesos lineales de interacción neuronal. La incertidumbre prima al determinismo, lo que abre la puerta a la posibilidad de un mecanismo cuántico para explicar la consciencia.[EN]: Modern neuroscience addresses the problem of the global functioning of the brain in order to understand the neurobiological processes that underlie mental functions, and especially, consciousness. Brain activity is based on the exchange of infor mation between neurons through contacts or synapses. Neurons form networks of connection between them (circuits), which are dedicated to processing a specific type of information (visual, auditory, motor…). The circuits establish networks among themselves, combining different modalities of information to generate what we know as mental activity. The study of connections between cortical regions, which has been called connectome, is being approached through neuroimaging techniques such as nuclear magnetic resonance that provide data on the density of connections in the brain. The brain’s ability to create new connections based on experience (brain plasticity) suggests that the connectome is a dynamic structure in constant interaction with external and internal stimuli. The question about whether knowledge of an individual’s connectome would allow us to predict his or her behavior seems to have no clear answer yet, because we do not know the physical parameters that link the complexity of the brain’s connections with the appearance of mental functions and consciousness. At the moment, it seems that the complex and unpredictable behavior is not the simple result of linear processes of neuronal interaction. Uncertainty prevails over determinism, which opens the door to the possibility of a quantum mechanism to explain consciousness.Peer reviewe

    Clinical Phenotypes Associated to Engrailed 2 Gene Alterations in a Series of Neuropediatric Patients

    No full text
    The engrailed homeobox protein (EN) plays an important role in the regionalization of the neural tube. EN distribution regulates the cerebellum and midbrain morphogenesis, as well as retinotectal synaptogenesis. In humans, the EN1 and EN2 genes code for the EN family of transcription factors. Genetic alterations in the expression of EN2 have been related to different neurologic conditions and more particularly to autism spectrum disorders (ASD). We aimed to study and compare the phenotypes of three series of patients: (1) patients with encephalic structural anomalies (ESA) and abnormalities in the genomic (DNA) and/or transcriptomic (RNAm) of EN2 (EN2-g), (2) ESA patients having other gene mutations (OG-g), and (3) ESA patients free of these mutations (NM-g).Subjects and Methods: We have performed a descriptive study on 109 patients who suffer from mental retardation (MR), cerebral palsy (CP), epilepsy (EP), and behavioral disorders (BD), showing also ESA in their encephalic MRI. We studied genomic DNA and transcriptional analysis (cDNA) on EN2 gene (EN2), and in other genes (OG): LIS1, PTAFR, PAFAH1B2, PAFAH1B3, FGF8, PAX2, D17S379, D17S1866, and SMG6 (D17S5), as a routine genetic diagnosis in ESA patients.Results: From 109 patients, fifteen meet the exclusion criteria. From the remaining 94 patients, 12 (12.8%) showed mutations in EN2 (EN2-g), 20 showed mutations in other studied genes (OG-g), and 62 did not showed any mutation (NM-g). All EN2-g patients, suffered from MR, nine EP, seven BD and four CP. The proportions of these phenotypes in EN2-g did not differ from those in the OG-g, but it was significantly higher when comparing EN2-g with NM-g (MR: p = 0.013; EP: p = 0.001; BD: p = 0.0001; CP: p = 0.07, ns). Groups EN2-g and OG-g showed a 100 and a 70% of comorbidity, respectively, being significantly (p = 0.04) greater than NM-group (62.9%).Conclusion: Our series reflects a significant effect of EN2 gene alterations in neurodevelopmental abnormalities associated to ESA. Conversely, although these EN2 related anomalies might represent a predisposition to develop brain diseases, our results did not support direct relationship between EN2 mutations and specific clinical phenotypes

    Sexual dimorphism development in the brain: the origin of sexual identity and behavior

    No full text
    [ES] El cerebro es el órgano más complejo del organismo del que dependen las funciones mentales y la conducta. Es evidente que las diferencias que caracterizan el comportamiento de machos y hembras en los vertebrados son debidas a la existencia de diferencias estructurales en el cerebro. Hoy en día se conoce bastante sobre las bases moleculares y celulares que subyacen al desarrollo y mantenimiento de estas diferencias, y por lo tanto, de las bases neurobiológicas del comportamiento diferencial entre machos y hembras de una misma especie. Nos proponemos revisar los últimos hallazgos que explican el desarrollo y las principales características del dimorfismo sexual en el cerebro de mamíferos y del hombre. Veremos cómo la producción de hormonas gonadales durante el desarrollo actúa sobre receptores específicos que regulan procesos fundamentales en el desarrollo genital durante la etapa precoz del desarrollo, y del sistema nervioso central durante la etapa perinatal. En el cerebro embrionario la acción de estas hormonas regula la neurogenesis y la muerte celular en regiones localizadas. Las neuronas y los circuitos neuronales de estas regiones están fundamentalmente implicados en el control de respuestas autónomas y reflejos motores con claro dimorfismo sexual, así como en funciones cerebrales más complejas que determinan la identidad y la conducta sexual del individuo. Por otro lado, el dimorfismo sexual del cerebro es aparente en otras regiones, explicando la respuesta diferente de machos y hembras a procesos que producen alteraciones generales de la función cerebral.[EN] Mental functions and behavior are consequence of the complex brain structure and function. Therefore, the differences that characterize the behavior of males and females in vertebrates are due to the existence of structural differences in the brain. Today our knowledge about the molecular and cellular processes underlying the development and maintenance of these differences is progressively increasing, and thus, the understanding of the neurobiological basis of differential behavior between males and females. We propose to review the latest findings that explain the development and the main features of sexual dimorphism in the brain of mammals. We will see how the production of gonadal hormones during development, acting on specific receptors, regulates key processes in the central nervous system during the perinatal period. In embryonic brain the action of these hormones modulate neurogenesis and cell death in specific neural regions. Neurons and neural circuitry of these regions are primarily involved in the control of autonomous sexual dimorphic motor reflex responses, as well as more complex brain functions as sexual identity and behavior. Moreover, the brain sexual dimorphism is also apparent in other regions, which explain the different response of males and females to general processes that produce alterations in brain function.Peer reviewe

    Neurobiological bases of autism and cellular models for its experimental study

    Get PDF
    [ES]: Los trastornos del espectro autista (TEA) son una alteración funcional de la corteza cerebral, que presenta anomalías estructurales del neurodesarrollo que afectan fundamentalmente a la función sináptica y el patrón de conexiones dentro y entre columnas corticales. Desde su aspecto etiológico, el TEA tiene una importante carga genética, considerándose un desorden derivado de una combinación de mutaciones “de novo”, asociadas a una predisposición derivada de variaciones comunes heredadas. Las principales anomalías genéticas asociadas a TEA implican genes que codifican proteínas de la sinapsis. Así, en pacientes con TEA se han descrito alteraciones del desarrollo inicial de las sinapsis en los circuitos de conexión entre áreas corticales de procesamiento complejo. La complejidad molecular observada en la predisposición a desarrollar un TEA, junto con la diversidad de fenotipos estructurales neuronales, ha hecho que los modelos animales reproduzcan solo parcialmente el TEA. Para avanzar en el estudio experimental se hace pues necesario desarrollar modelos más representativos, como son los modelos celulares derivados de células humanas. En las últimas décadas, el desa- rrollo de la biología de las células madre nos da medios para acceder a paradigmas experimentales sobre células derivadas de individuos con TEA. Actualmente, los modelos de células plutipotentes inducidas (IPs) derivadas de células humanas permiten profundizar en el estudio de las bases moleculares y celulares del TEA. Sin embargo, presentan problemas inherentes derivados de la manipulación experimental que conlleva la reprogramación de la expresión génica, por lo que otros modelos celulares se están también postulando como válidos.[EN]: Autism Spectrum Disorders (ASD) are a functional alteration of the cerebral cortex, which presents structural neuro- developmental anomalies that affect synaptic function and the pattern of connections within and between corti- cal columns. From its etiological aspect, ASD has an important genetic load, considering a polygenic disorder, derived from a combination of “de novo” genetic mutations, associated to a predisposition derived from common inherited variations. The main genetic anomalies associated with ASD involve genes that encode proteins of the synapse. Thus, in patients with ASD, alterations in the initial development of the synapses have been described in the connection circuits between complex processing cortical areas. The molecular complexity observed in the predisposition to develop an ASD, together with the diversity of structural phenotypes, has made animal models reproduce only partially the ASD. To advance in the experimental study it is therefore necessary to develop rep- resentative models, such as cellular models derived from human cells. In recent decades, the advances in stem cell biology give us a way to apply experimental paradigms in cells derived from individuals with ASD. Currently, induced pluripotent cells (IPs) derived from human adult cells allow deepening the study of molecular and cellular bases of the neuronal development in humans, as well as the anomalies in this development, which give rise to disorders such as ASD. However, they present inherent problems derived from the experimental manipulation that involves the reprogramming of gene expression, therefore other models are also been explored.Este trabajo ha sido financiado por los siguientes proyectos de investigación: FEDER BFU2011-27326, SAF2014-59347-C2-1-R and Severo Ochoa Excellence Project SEV-2013-0317; Instituto de Salud Carlos III: Red TERCEL RD12/0019/0024, Generalitat Valenciana: PROMETEO II/2014/014.Peer reviewe

    Neurobiological bases of autistic spectrum disorder and attention deficit hyperactivity disorder: neural differentiation and synaptogenesis

    No full text
    [Objetivo] Conocer los procesos neurales ligados a la formación de sinapsis y circuitos cerebrales para entender su papel en las enfermedades del neurodesarrollo, como el trastorno del espectro autista (TEA) y el trastorno por déficit de atención/hiperactividad (TDAH).[Desarrollo] La actividad de los circuitos neuronales es la base neurobiológica de la conducta y la actividad mental (emociones, memoria y pensamientos). Los procesos de diferenciación de las células neurales y la formación de circuitos por contactos sinápticos entre neuronas (sinaptogénesis) ocurren en el sistema nervioso central durante las últimas fases del desarrollo prenatal y los primeros meses después del nacimiento. Los TEA y el TDAH comparten rasgos biológicos, relacionados con alteraciones en los circuitos cerebrales y la función sináptica, que permiten tratarlos científicamente de forma conjunta. Desde el aspecto neurobiológico, el TEA y el TDAH son manifestaciones de anomalías en la formación de circuitos y contactos sinápticos en regiones cerebrales implicadas en la conducta social, especialmente en la corteza cerebral prefrontal. Estas anomalías son causadas por mutaciones en genes involucrados en la formación de sinapsis y plasticidad sináptica, la regulación de la morfología de las espinas dendríticas, la organización del citoesqueleto y el control del equilibrio excitador e inhibidor en la sinapsis.[Conclusiones] El TEA y el TDAH son alteraciones funcionales de la corteza cerebral, que presenta anomalías estructurales en la disposición de las neuronas, en el patrón de conexiones de las columnas corticales y en la estructura de las espinas dendríticas. Estas alteraciones afectan fundamentalmente a la corteza prefrontal y sus conexiones.Peer reviewe

    Mechanism of action of cell therapy in hereditary diseases

    Get PDF
    [ES]: Los trastornos heredados del metabolismo son enfermedades graves de la infancia que cursan con un gran deterioro cognitivo y del desarrollo psicomotor. La fisiopatología del progresivo deterioro del sistema nervioso suele estar asociada a una severa neuroinflamación y desmielinización, y como consecuencia, neurodegeneración. Por el momento no tienen cura y precisan de actitudes terapéuticas precoces y agresivas, que conllevan altas tasas de mortalidad y, muy frecuentemente, escasos grados de mejoría funcional y supervivencia. El trasplante de médula ósea y de células mesenquimales de médula ósea son terapias de elección y experimentales que consiguen mejorar el curso de estas enfermedades mediante diferentes mecanismos de acción: remplazo de enzima deficiente, intercambio de membranas y regulación del proceso inflamatorio.[EN]: Inherited metabolism disorders are serious childhood diseases that lead to significant cognitive impairment and regression of psychomotor development. The pathophysiology of the neural progressive deterioration is usually associated with severe neuroinflammation and demyelination, and as a consequence, neurodegeneration. At the moment they have no adequate treatment and require early and aggressive therapeutic approaches, which entail high mortality rates and, very frequently, low degrees of functional improvement and survival. Bone marrow transplantation and bone marrow mesenchymal cells grafts are therapeutic and experimental therapies that improve the course of these diseases through different mechanisms of action: enzyme replacement, membrane exchange and regulation of the inflammatory process.Peer reviewe
    corecore