34 research outputs found

    Copper(II) and silver(I)‑1,10‑phenanthroline‑5,6‑dione complexes interact with double‑stranded DNA: further evidence of their apparent multi‑modal activity towards Pseudomonas aeruginosa

    Get PDF
    Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (− 7.9 kcal/mol) or minor (− 7.2 kcal/mol) DNA grooves. In vitro competitive quenching assays involving duplex DNA with Hoechst 33258 or ethidium bromide demonstrated that Ag-phendione and Cu-phendione preferentially bind DNA in the minor grooves. The competitive ethidium bromide displacement technique revealed Cu-phendione has a higher binding affinity to DNA (Kapp = 2.55 × 106 M−1) than Ag-phendione (Kapp = 2.79 × 105 M−1) and phendione (Kapp = 1.33 × 105 M−1). Cu-phendione induced topoisomerase I-mediated DNA relaxation of supercoiled plasmid DNA. Moreover, Cu-phendione was able to induce oxidative DNA injuries with the addition of free radical scavengers inhibiting DNA damage. Ag-phendione and Cu-phendione avidly displaced propidium iodide bound to DNA in permeabilized Pseudomonas aeruginosa cells in a dose-dependent manner as judged by flow cytometry. The treatment of P. aeruginosa with bactericidal concentrations of Cu-phendione (15 ”M) induced DNA fragmentation as visualized by either agarose gel or TUNEL assays. Altogether, these results highlight a possible novel DNA-targeted mechanism by which phendione-containing complexes, in part, elicit toxicity toward the multidrug-resistant pathogen P. aeruginosa

    Insights into the multi-azole resistance profile in Candida haemulonii species complex

    Get PDF
    The Candida haemulonii complex (C. duobushaemulonii, C. haemulonii, and C. haemulonii var. vulnera) is composed of emerging, opportunistic human fungal pathogens able to cause invasive infections with high rates of clinical treatment failure. This fungal complex typically demonstrates resistance to first-line antifungals, including fluconazole. In the present work, we have investigated the azole resistance mechanisms expressed in Brazilian clinical isolates forming the C. haemulonii complex. Initially, 12 isolates were subjected to an antifungal susceptibility test, and azole cross-resistance was detected in almost all isolates (91.7%). In order to understand the azole resistance mechanistic basis, the efflux pump activity was assessed by rhodamine-6G. The C. haemulonii complex exhibited a significantly higher rhodamine-6G efflux than the other non-albicans Candida species tested (C. tropicalis, C. krusei, and C. lusitaneae). Notably, the efflux pump inhibitors (Phe-Arg and FK506) reversed the fluconazole and voricolazole resistance phenotypes in the C. haemulonii species complex. Expression analysis indicated that the efflux pump (ChCDR1, ChCDR2, and ChMDR1) and ERG11 genes were not modulated by either fluconazole or voriconazole treatments. Further, ERG11 gene sequencing revealed several mutations, some of which culminated in amino acid polymorphisms, as previously reported in azole-resistant Candida spp. Collectively, these data point out the relevance of drug efflux pumps in mediating azole resistance in the C. haemulonii complex, and mutations in ERG11p may contribute to this resistance profile

    The Diverse Calpain Family in Trypanosomatidae: Functional Proteins Devoid of Proteolytic Activity?

    No full text
    Calpains are calcium-dependent cysteine peptidases that were originally described in mammals and, thereafter, their homologues were identified in almost all known living organisms. The deregulated activity of these peptidases is associated with several pathologies and, consequently, huge efforts have been made to identify selective inhibitors. Trypanosomatids, responsible for life-threatening human diseases, possess a large and diverse family of calpain sequences in their genomes. Considering that the current therapy to treat trypanosomatid diseases is limited to a handful of drugs that suffer from unacceptable toxicity, tough administration routes, like parenteral, and increasing treatment failures, a repurposed approach with calpain inhibitors could be a shortcut to successful chemotherapy. However, there is a general lack of knowledge about calpain functions in these parasites and, currently, the proteolytic activity of these proteins is still an open question. Here, we highlight the current research and perspectives on trypanosomatid calpains, overview calpain description in these organisms, and explore the potential of targeting the calpain system as a therapeutic strategy. This review gathers the current knowledge about this fascinating family of peptidases as well as insights into the puzzle: are we unable to measure calpain activity in trypanosomatids, or are the functions of these proteins devoid of proteolytic activity in these parasites

    Analyzing ambiguities in trypanosomatids taxonomy by barcoding

    No full text
    BACKGROUND: Biodiversity screens and phylogenetic studies are dependent on reliable DNA sequences in public databases. Biological collections possess vouchered specimens with a traceable history. Therefore, DNA sequencing of samples available at institutional collections can greatly contribute to taxonomy, and studies on evolution and biodiversity. METHODS: We sequenced part of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and the SSU rRNA (V7/V8) genes from 102 trypanosomatid cultures, which are available on request at www.colprot.fiocruz.br. OBJECTIVE: The main objective of this work was to use phylogenetic inferences, using the obtained DNA sequences and those from representatives of all Trypanosomatidae genera, to generate phylogenetic trees that can simplify new isolates screenings. FINDINGS: A DNA sequence is provided for the first time for several isolates, the phylogenic analysis allowed the classification or reclassification of several specimens, identification of candidates for new genera and species, as well as the taxonomic validation of several deposits. MAIN CONCLUSIONS: This survey aimed at presenting a list of validated species and their associated DNA sequences combined with a short historical overview of each isolate, which can support taxonomic and biodiversity research and promote culture collections

    Identification and properties of two extracellular proteases from Brevundimonas diminuta Identificação e propriedades de duas proteases extracelulares de Brevundimonas diminuta

    No full text
    Extracellular proteases from Brevundimonas diminuta (syn. Pseudomonas diminuta) were studied in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) containing a copolymerized substrate. Two proteases were detected migrating at 67 kDa and 50 kDa: both of them hydrolysed preferentially gelatin, but casein was also degraded and a slight hydrolysis was observed with hemoglobin. No detectable extracellular proteolytic activity was found in bovine serum albumin-containing gels. The optima temperature and pH for proteolytic activity were between 40ÂșC and 50ÂșC in a pH ranging from 7.0 to 11.0, respectively. These enzymes were isolated by analytical high performance liquid chromatography (HPLC). Protease assays with the synthetic substrate Z-Phe-Arg-MCA and the inhibitors EGTA, EDTA and 1, 10 phenanthroline point out that these enzymes are metalloproteases.<br>Proteases extracelulares de Brevundimonas diminuta (Pseudomonas diminuta) foram identificadas e caracterizadas por eletroforese em gel de poliacrilamida com dodecilsulfato de sĂłdio, contendo um substrato co-polimerizado. Duas proteases foram detectadas migrando em 67 kDa e 50 kDa: ambas hidrolisaram preferencialmente a gelatina, embora a caseĂ­na tambĂ©m tenha sido degradada e uma pequena hidrĂłlise tenha sido observada com hemoglobina. Nenhuma atividade proteolĂ­tica extracelular foi detectada nos gĂ©is contendo soro albumina bovina. CondiçÔes Ăłtimas de temperatura e pH para a atividade proteolĂ­tica foram observadas entre 40ÂșC e 50ÂșC e numa faixa de pH que variou de 7,0 a 11,0, respectivamente. Essas enzimas foram isoladas por cromatografia lĂ­quida de alta resolução. Os ensaios enzimĂĄticos com o substrato sintĂ©tico Z-Phe-Arg-MCA e com os inibidores EGTA, EDTA e 1, 10 fenantrolina indicam que essas enzimas sĂŁo metaloproteases
    corecore