7 research outputs found

    Bright light exposure reduces TH-positive dopamine neurons: Implications of light pollution in Parkinson\u27s disease epidemiology

    Get PDF
    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague–Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright light for 20 days or 90 days showed a relatively greater number of neuromelanin-positive neurons. Surprisingly, TH-positive neurons decreased progressively in the substantia nigra reaching a significant 29% reduction after 90 days of continuous bright light exposure. This decrease was paralleled by a diminution of dopamine and its metabolite in the striatum. Remarkably, in preliminary analysis that accounted for population density, the age and race adjusted Parkinson's disease prevalence significantly correlated with average satellite-observed sky light pollution

    Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson's disease epidemiology.

    Get PDF
    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague-Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright light for 20 days or 90 days showed a relatively greater number of neuromelanin-positive neurons. Surprisingly, TH-positive neurons decreased progressively in the substantia nigra reaching a significant 29% reduction after 90 days of continuous bright light exposure. This decrease was paralleled by a diminution of dopamine and its metabolite in the striatum. Remarkably, in preliminary analysis that accounted for population density, the age and race adjusted Parkinson's disease prevalence significantly correlated with average satellite-observed sky light pollution

    Eyes as Gateways for Environmental Light to the Substantia Nigra: Relevance in Parkinson’s Disease

    Get PDF
    Recent data indicates that prolonged bright light exposure of rats induces production of neuromelanin and reduction of tyrosine hydroxylase positive neurons in the substantia nigra. This effect was the result of direct light reaching the substantia nigra and not due to alteration of circadian rhythms. Here, we measured the spectrum of light reaching the substantia nigra in rats and analysed the pathway that light may take to reach this deep brain structure in humans. Wavelength range and light intensity, emitted from a fluorescent tube, were measured, using a stereotaxically implanted optical fibre in the rat mesencephalon. The hypothetical path of environmental light from the eye to the substantia nigra in humans was investigated by computed tomography and magnetic resonance imaging. Light with wavelengths greater than 600 nm reached the rat substantia nigra, with a peak at 709 nm. Eyes appear to be the gateway for light to the mesencephalon since covering the eyes with aluminum foil reduced light intensity by half. Using computed tomography and magnetic resonance imaging of a human head, we identified the eye and the superior orbital fissure as possible gateways for environmental light to reach the mesencephalon

    Novel dimensions of D3 receptor function: Focus on heterodimerisation, transactivation and allosteric modulation

    No full text
    The brain's complexity derives not only from the way the intricate network of neurons is wired, but also by protein complexes that recognize and decode chemical information. G protein-coupled receptors (GPCRs) represent the most abundant family of proteins mediating neurotransmission in the brain, and their ability to form homo- and heteromers which amplifies the scope for synaptic communication and fine-tuning. Dopamine receptors are important drug targets and members of both the D1/D5 and D2/D3/D4 receptor families form homo- and heteromers. The present article focuses on D3 receptor homo- and heteromers, in particular, those formed in association with their D2 counterparts. We highlight the binding profiles and mechanisms of interaction with D3-D3 homomers and D3-D2 heteromers of: first, the PET ligand and potent agonist [11C]-(+)-PHNO; second, the novel, bitopic/allosteric dopamine D3 receptor antagonist, SB269,652; and third, diverse partial agonists like antipsychotic and aripiprazole. Molecular mechanisms of interplay between the two protomers of heteromeric D3-D2 complexes are likewise discussed: for example, "transactivation", whereby recruitment of one member of a heteromer harnesses signalling pathways is normally coupled to the other protomer. Finally, D1 receptor heteromers are also taken into consideration in deciphering the nature of interfaces required to stabilize dimeric assemblies and permit their interaction with G proteins. Improved understanding of D3 as well as D2 and D1 receptor complexes should yield important insights into their physiological roles and pathological significance, and permit the development of novel drug classes with potentially distinctive functional profiles and improved therapeutic windows

    The atypical antipsychotic clozapine selectively inhibits interleukin 8 (IL-8)-induced neutrophil chemotaxis

    No full text
    Clozapine is the most effective antipsychotic to date, but its benefits are counterbalanced by the risk of severe hematological effects. In this study, we analyzed whether clozapine inhibits polymorphonuclear (PMN) leukocyte chemotaxis. We found that clozapine, within the therapeutic concentration range, potently and selectively inhibits PMN chemotaxis induced by interleukin 8 (IL-8), a chemokine inducing neutrophil migration. The effect was not due to its action at dopamine, serotonin and muscarinic receptors, or to a direct antagonism to IL-8 receptors. Furthermore, clozapine did not inhibit PMN chemotaxis by its presumed toxic mechanism. In fact, after an overnight incubation in cell culture, the drug did not increase the physiological PMN apoptosis. An interference of clozapine with the autocrine release of leukotriene B4 (LTB4), a secondary chemoattractant secreted by neutrophils in response to the primary chemoattractant IL-8, was hypothesized. In agreement with this hypothesis, clozapine attenuated the IL-8-induced release of LTB4 in PMNs. A series of experiments with an antagonist of the LTB4 receptor, U75302, and an inhibitor of LTB4 synthesis, zileuton, provided support to this conjecture. Intriguingly MK-571, an inhibitor of the multi-drug resistance protein MRP4, playing a pivotal role in effluxing LTB4, completely blocked PMN chemotaxis induced by IL-8, but gave conflicting results when tested for its ability to reduce LTB4 release, increasing LTB4 efflux by itself but reducing the release when in combination with IL-8. The reduction of PMN chemotaxis due to clozapine could predispose patients to infections. Whether this effect is a prelude to clozapine agranulocytosis requires further investigation

    Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not

    No full text
    We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∌710 nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [3H]DA uptake, did not change. Finally, we observed that 710 nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength
    corecore