5 research outputs found

    Calcineurin undergoes a conformational switch evoked via peptidyl-prolyl isomerization

    Get PDF
    Copyright: © 2015 Guasch et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. A limited repertoire of PPP family of serine/threonine phosphatases with a highly conserved catalytic domain acts on thousands of protein targets to orchestrate myriad central biological roles. A major structural reorganization of human calcineurin, a ubiquitous Ser/Thr PPP regulated by calcium and calmodulin and targeted by immunosuppressant drugs cyclosporin A and FK506, is unveiled here. The new conformation involves trans- to cis- isomerization of proline in the SAPNY sequence, highly conserved across PPPs, and remodels the main regulatory site where NFATc transcription factors bind. Transitions between cis- and trans- conformations may involve peptidyl prolyl isomerases such as cyclophilin A and FKBP12, which are known to physically interact with and modulate calcineurin even in the absence of immunosuppressant drugs. Alternative conformations in PPPs provide a new perspective on interactions with substrates and other protein partners and may foster development of more specific inhibitors as drug candidates.This work was supported by grants SAF2009-08216-BFU2012-36827 from Ministerio de Ciencia e Innovación and 2009SGR1490-2014SGR987 from the Generalitat de Catalunya. A. A.-I. was a recipient of an FI PhD fellowship from Generalitat de CatalunyaPeer Reviewe

    Inhibiting the Calcineurin-NFAT (Nuclear Factor of Activated T Cells) Signaling Pathway with a Regulator of Calcineurin-derived Peptide without Affecting General Calcineurin Phosphatase Activity*S⃞

    Get PDF
    Calcineurin phosphatase plays a crucial role in T cell activation. Dephosphorylation of the nuclear factors of activated T cells (NFATs) by calcineurin is essential for activating cytokine gene expression and, consequently, the immune response. Current immunosuppressive protocols are based mainly on calcineurin inhibitors, cyclosporine A and FK506. Unfortunately, these drugs are associated with severe side effects. Therefore, immunosuppressive agents with higher selectivity and lower toxicity must be identified. The immunosuppressive role of the family of proteins regulators of calcineurin (RCAN, formerly known as DSCR1) which regulate the calcineurin-NFAT signaling pathway, has been described recently. Here, we identify and characterize the minimal RCAN sequence responsible for the inhibition of calcineurin-NFAT signaling in vivo. The RCAN-derived peptide spanning this sequence binds to calcineurin with high affinity. This interaction is competed by a peptide spanning the NFAT PXIXIT sequence, which binds to calcineurin and facilitates NFAT dephosphorylation and activation. Interestingly, the RCAN-derived peptide does not inhibit general calcineurin phosphatase activity, which suggests that it may have a specific immunosuppressive effect on the calcineurin-NFAT signaling pathway. As such, the RCAN-derived peptide could either be considered a highly selective immunosuppressive compound by itself or be used as a new tool for identifying innovative immunosuppressive agents. We developed a low throughput assay, based on the RCAN1-calcineurin interaction, which identifies dipyridamole as an efficient in vivo inhibitor of the calcineurin-NFAT pathway that does not affect calcineurin phosphatase activity
    corecore