17 research outputs found

    Relation between Strawberry Fruit Redness and Bioactivity: Deciphering the Role of Anthocyanins as Health Promoting Compounds

    Get PDF
    The red colour of most berries is often associated to fruit healthiness, since it has been linked to enrichment in anthocyanins (polyphenol with antioxidative properties). However, recent studies suggest that anthocyanins could not be the major contributors to bioactivity leading to uncertainty about their role as important molecules in the generation of health-promoting properties. To shed light on this issue, spectrophotometric and HPLC techniques were used for characterizing the content of phenolic compounds, including anthocyanins, in fruits of red (Fragaria x ananassa, cv. Fortuna) and white strawberry (Fragaria vesca spp. XXVIII) species (distinguishing receptacle from achene). In addition, the effect of these extracts on the reduction of intracellular ROS was tested, as well as on the activity of antioxidant enzymes and the quantification of cell oxidation markers. The results showed that white receptacle extracts (deprived of anthocyanins) were able to protect cells from oxidative damage to a greater extent than red fruits. This could be due per se to their high antioxidant capacity, greater than that shown in red fruits, or to the ability of antioxidants to modulate the activity of antioxidant enzymes, thus questioning the positive effect of anthocyanins on the wholesomeness of strawberry fruits. The results shed light on the relevance of anthocyanins in the prevention of health-associated oxidative damage.AVA2019.034 project, co-financed by the FEDER funds (UE) within the “Programa Operativo de Andalucía 2014–2020”Breeding Value project funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 101000747IFAPA, Junta de AndalucíaJdC-I post-doctoral contract with grant reference IJC2020-043910-I, funded by NextGenerationE

    Improvement of Strawberry Irrigation Sustainability in Southern Spain Using FAO Methodology

    No full text
    Irrigation sustainability is particularly important in the vicinity of Doñana National Park (Huelva, Spain), where Europe’s most important wetland area coexists with a profitable strawberry irrigation activity. In this paper, an innovation and technology transfer project was laid out. The project was promoted by the Institute of Agricultural and Fisheries Research and Training (IFAPA), belonging to the Regional Government of Andalusia. The main objective of the project was to contribute to the sustainability of the complex ecological, productive, and social system of this region. The project was focused on the rational use of water resources. Experimentation, demonstration, technology transfer, and training activities were carried out, involving public administrations, companies, and private farms. The project was carried out in collaboration with strawberry companies covering a total surface area of 1900 hectares. Irrigation application efficiency and irrigation water productivity increased by 66% and there was also a significant increase in water saving (44%), without resulting production losses. The success of the activity was based on the implication of farmers in experimentation assignments. During a five-year time span, irrigation trials took place on several farms. This fact allowed a progressive improvement of irrigation management by farmers based on confidence in the experimental work results

    Seed-Encapsulation of Desiccation-Tolerant Microorganisms for the Protection of Maize from Drought: Phenotyping Effects of a New Dry Bioformulation

    No full text
    Droughts and high temperatures deeply affect crop production. The use of desiccation-tolerant (or xerotolerant) microorganisms able to protect plants from droughts represents a promising alternative. These xerotolerant microorganisms have previously been used to modulate plant responses and improve their tolerance to drought. In addition, these microorganisms could be stored and used in dry formats, which would improve their viability and resilience at a much lower cost than current market alternatives. In the present study we analyze the possibility of using strains of xerotolerant Actinobacteria in encapsulated format on seeds. Under this formulation, we carried out greenhouse with farming soil with maize plants. Under greenhouse conditions, the plants showed greater resistance to drought, as well as increased growth and production yield, but not as well in field trials. This alternative could represent a useful tool to improve water efficiency in crops for drought-affected areas or affected by water scarcity

    Seed-Encapsulation of Desiccation-Tolerant Microorganisms for the Protection of Maize from Drought: Phenotyping Effects of a New Dry Bioformulation

    No full text
    Droughts and high temperatures deeply affect crop production. The use of desiccation-tolerant (or xerotolerant) microorganisms able to protect plants from droughts represents a promising alternative. These xerotolerant microorganisms have previously been used to modulate plant responses and improve their tolerance to drought. In addition, these microorganisms could be stored and used in dry formats, which would improve their viability and resilience at a much lower cost than current market alternatives. In the present study we analyze the possibility of using strains of xerotolerant Actinobacteria in encapsulated format on seeds. Under this formulation, we carried out greenhouse with farming soil with maize plants. Under greenhouse conditions, the plants showed greater resistance to drought, as well as increased growth and production yield, but not as well in field trials. This alternative could represent a useful tool to improve water efficiency in crops for drought-affected areas or affected by water scarcity

    A Comparative Transcriptome Analysis of Avocado Embryogenic Lines Susceptible or Resistant to Rosellinia necatrix Exudate

    Get PDF
    Avocado embryogenic cultures were selected for resistance to the culture filtrate (CF) of Rosellinia necatrix, the causal agent of White Root Rot disease. A resistant callus line was obtained through recurrent selections in progressively increasing concentrations of fungal CF (from 60% to 80%). RNA sequencing (RNA-Seq) technology was used to compare the transcriptomic profiles of the avocado embryogenic-callus-resistant line L3 (capable to survive in the presence of 80% CF) and control line AN-9 (not exposed to CF), after 24 h of growth in a medium containing 40% CF. A total of 25,211 transcripts were obtained, of which 4,918 and 5,716 were differentially expressed in the resistant and control line, respectively. Interestingly, exposure of embryogenic callus lines to 40% of R. necatrix exudates induced genes previously reported to be related to avocado defense against fungal diseases (lignin biosynthesis, Pathogenesis Related (PR) proteins, WRKY (WRKYGQK) Transcription Factor (TF), NAC (NAM, ATAF1/2, and CUC2) TF, proteinase inhibitors and Ethylene Response Transcription Factor (ERF), among others), which were accumulated in greater amounts in the resistant line in comparison to the susceptible one. This research will contribute to the understanding of avocado defense against this pathogen, thereby aiding in the selection of resistant avocado rootstocks

    Yield and Fruit Quality of Strawberry Cultivars under Different Irrigation Regimes

    No full text
    Strawberry (Fragaria×ananassa Duch.) production requires the input of large amounts of water provided by irrigation during the entire production cycle. However, water availability is shrinking in many important strawberry cropping areas, such as Huelva (in Europe), compromising the environmental sustainability and economic viability of strawberry production. Besides technical approaches, water-saving strategies are necessary for improving strawberry water productivity such as the use of low water-consumptive cultivars with high productivity or cultivars allowing deficit irrigation (DI) strategies. A two-year field experiment was conducted to compare the physiological and agronomical response of six commercial strawberry cultivars (‘Sabrina’, ‘Fortuna’, ‘Splendor’, ‘Primoris’, ‘Rabida’ and ‘Rociera’) to six different water treatments ranging from 65% to 140% of estimated ‘Sabrina’ evapotranspiration (ETcSab; ~224–510 mm year−1). Cultivars differed substantially in yield and water consumption linked to their biomass partitioning into reproductive/ vegetative organs, determining different yield efficiency (YE). Their water needs (IN) conditioned their response to different water supplies, involving significant yield losses in DI treatments (<20% IN) but not decreasing fruit quality. The highly-consumptive and productive ‘Rabida’ and ‘Rociera’, reduced yields by DI (<40%) but were still profitable; the low-water-consumptive but still productive ‘Fortuna’, ‘Splendor’ and ‘Primoris’ represent significant water-savings (<20%) in strawberry cultivation

    Yield and Fruit Quality of Strawberry Cultivars under Different Irrigation Regimes

    No full text
    Strawberry (Fragaria×ananassa Duch.) production requires the input of large amounts of water provided by irrigation during the entire production cycle. However, water availability is shrinking in many important strawberry cropping areas, such as Huelva (in Europe), compromising the environmental sustainability and economic viability of strawberry production. Besides technical approaches, water-saving strategies are necessary for improving strawberry water productivity such as the use of low water-consumptive cultivars with high productivity or cultivars allowing deficit irrigation (DI) strategies. A two-year field experiment was conducted to compare the physiological and agronomical response of six commercial strawberry cultivars (‘Sabrina’, ‘Fortuna’, ‘Splendor’, ‘Primoris’, ‘Rabida’ and ‘Rociera’) to six different water treatments ranging from 65% to 140% of estimated ‘Sabrina’ evapotranspiration (ETcSab; ~224–510 mm year−1). Cultivars differed substantially in yield and water consumption linked to their biomass partitioning into reproductive/ vegetative organs, determining different yield efficiency (YE). Their water needs (IN) conditioned their response to different water supplies, involving significant yield losses in DI treatments (<20% IN) but not decreasing fruit quality. The highly-consumptive and productive ‘Rabida’ and ‘Rociera’, reduced yields by DI (<40%) but were still profitable; the low-water-consumptive but still productive ‘Fortuna’, ‘Splendor’ and ‘Primoris’ represent significant water-savings (<20%) in strawberry cultivation

    Physiological and molecular responses of ‘Dusa’ avocado rootstock to water stress : insights for drought adaptation

    Get PDF
    Avocado consumption is increasing year by year, and its cultivation has spread to many countries with low water availability, which threatens the sustainability and profitability of avocado orchards. However, to date, there is not much information on the behavior of commercial avocado rootstocks against drought. The aim of this research was to evaluate the physiological and molecular responses of ‘Dusa’ avocado rootstock to different levels of water stress. Plants were deficit irrigated until soil water content reached 50% (mild-WS) and 25% (severe-WS) of field capacity. Leaf water potential (ιw), net CO2 assimilation rates (AN), transpiration rate (E), stomatal conductance (gs), and plant transpiration rates significantly decreased under both WS treatments, reaching significantly lower values in severe-WS plants. After rewatering, mild- and severe-WS plants showed a fast recovery in most physiological parameters measured. To analyze root response to different levels of drought stress, a cDNA avocado stress microarray was carried out. Plants showed a wide transcriptome response linked to the higher degree of water stress, and functional enrichment of differentially expressed genes (DEGs) revealed abundance of common sequences associated with water stress, as well as specific categories for mild-WS and severe-WS. DEGs previously linked to drought tolerance showed overexpression under both water stress levels, i.e., several transcription factors, genes related to abscisic acid (ABA) response, redox homeostasis, osmoprotection, and cell-wall organization. Taken altogether, physiological and molecular data highlight the good performance of ‘Dusa’ rootstock under low-water-availability conditions, although further water stress experiments must be carried out under field conditions.The RTA2017–00040–00–00 (INIA-AEI) and AVA2019.008 projects (20% Junta de Andalucía, 80% FEDER).http://www.mdpi.com/journal/plantspm2022BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyPlant Production and Soil Scienc

    Bioaccessibility and potential bioavailability of phenolic compounds from achenes as a new target for strawberry breeding programs

    No full text
    Strawberry is a major natural source of bioactive compounds. Botanically, strawberry is an aggregate fruit consisting of a fleshy floral receptacle that bears a cluster of real dry fruits (achenes). Existing knowledge on the phenolic composition of achenes and its contribution to that of the whole fruit is limited. Also, the gastric and intestinal bioavailability of phenols is poorly known. In this work, a combination of spectrophotometric and HPLC–DAD methods was used to analyse the phenolic composition of whole fruits and achenes before and after in vitro digestion. Five different phenol families were identified. Also, achenes were found to contribute a sizeable fraction of phenolic acids and hydrolysable tannins in the whole fruit. Because the mere presence of phenolic compounds in a food matrix does not ensure their ready absorption and bioavailability, polyphenol potential bioavailability could be an effective selection criterion for strawberry breeding programs aimed at improving dietary healthiness. © 2017 Elsevier Lt
    corecore