7 research outputs found

    Variabilidad dentro del Registro Nacional multicéntrico en Vigilancia Activa; cuestionario a urólogos

    Get PDF
    Introducción: Nuestro objetivo principal es describir la utilización actual en España de la vigilancia activa (VA) identificando áreas de potencial mejora. Métodos: Un cuestionario generado en AEU/PIEM/2014/0001 (NCT02865330) fue remitido a todos los investigadores asociados (IA) durante los meses de enero-marzo del 2016. Incluía 7 dominios diferentes cubriendo diferentes aspectos en VA. Resultados: Treinta y tres de cuarenta y un IA respondieron el cuestionario. La VA es principalmente controlada por los Servicios de Urología (87,9%). Hubo una gran heterogeneidad en las clásicas variables clínico-patológicas como criterios de selección. La densidad de antígeno prostático específico (PSAd) solo se usaba en el 36,4% IA. La RMmp era claramente infrautilizada como estadificación inicial (6%). Solo el 27,3% reconocía un alto nivel de experiencia en RMmp de sus colegas radiólogos. Con relación a la biopsia de confirmación, la mayoría de los centros utilizaban la vía transrectal y solo 2/33 la vía transperineal/software de fusión. La mitad de los IA entrevistados pasaron a tratamiento activo ante progresión patológica a Gleason 7 (3 + 4). No existió consenso en cuanto a cuándo pasar a estrategia de observación. Conclusiones: El estudio demostró la infrautilización del consentimiento informado y de los cuestionarios de calidad de vida. El PSAd no se incluía como elemento decisor en la estrategia inicial en la mayoría. Se plasmó una desconfianza en la experiencia de los urólogos con la RMmp y una infrautilización de la vía transperineal, así como la no existencia de consenso en los protocolos de seguimiento y en los criterios de tratamiento activo., confirmando la necesidad de estudios prospectivos analizando el papel de la RMmp y los biomarcadores. Background: Our main objective was to report the current use of active surveillance in Spain and to identify areas for potential improvement. Methods: A questionnaire generated by the Platform for Multicentre Studies of the Spanish Urology Association (AEU/PIEM/2014/0001, NCT02865330) was sent to all associate researchers from January to March 2016. The questionnaire included 7 domains covering various aspects of active surveillance. Results: Thirty-three of the 41 associate researchers responded to the questionnaire. Active surveillance is mainly controlled by the urology departments (87.9%). There was considerable heterogeneity in the classical clinical-pathological variables as selection criteria. Only 36.4% of the associate researchers used prostate-specific antigen density (PSAd). Multiparametric magnetic resonance imaging (mpMRI) was clearly underused as initial staging (6%). Only 27.3% of the researchers stated that their radiology colleagues had a high level of experience in mpMRI. In terms of the confirmation biopsy, most of the centres used the transrectal pathway, and only 2 out of 33 used the transperineal pathway or fusion software. Half of the researchers interviewed applied active treatment when faced with disease progression to Gleason 7 (3+4). There was no consensus on when to transition to an observation strategy. Conclusions: The study showed the underutilisation of informed consent and quality-of-life questionnaires. PSAd was not included as a decisive element in the initial strategy for most researchers. There was a lack of confidence in the urologists’ mpMRI experience and an underutilisation of the transperineal pathway. There was also no consensus on the follow-up protocols and active treatment criteria, confirming the need for prospective studies to analyse the role of mpMRI and biomarkers

    Role of the 4Kscore test as a predictor of reclassification in prostate cancer active surveillance

    Get PDF
    Background: Management of active surveillance (AS) in low-risk prostate cancer (PCa) patients could be improved with new biomarkers, such as the 4Kscore test. We analyze its ability to predict tumor reclassification by upgrading at the confirmatory biopsy at 6 months. Methods: Observational, prospective, blinded, and non-randomized study, within the Spanish National Registry on AS (AEU/PIEM/2014/0001; NCT02865330) with 181 patients included after initial Bx and inclusion criteria: PSA =10 ng/mL, cT1c-T2a, Grade group 1, =2 cores, and =5 mm/50% length core involved. Central pathological review of initial and confirmatory Bx was performed on all biopsy specimens. Plasma was collected 6 months after initial Bx and just before confirmatory Bx to determine 4Kscore result. In order to predict reclassification defined as Grade group =2, we analyzed 4Kscore, percent free to total (%f/t) PSA ratio, prostate volume, PSA density, family history, body mass index, initial Bx, total cores, initial Bx positive cores, initial Bx % of positive cores, initial Bx maximum cancer core length and initial Bx cancer % involvement. Wilcoxon rank-sum test, non-parametric trend test or Fisher’s exact test, as appropriate established differences between groups of reclassification. Results: A total of 137 patients met inclusion criteria. Eighteen patients (13.1%) were reclassified at confirmatory Bx. The %f/t PSA ratio and 4Kscore showed differences between the groups of reclassification (Yes/No). Using 7.5% as cutoff for the 4Kscore, we found a sensitivity of 89% and a specificity of 29%, with no reclassifications to Grade group 3 for patients with 4Kscore below 7.5% and 2 (6%) missed Grade group 2 reclassified patients. Using this threshold value there is a biopsy reduction of 27%. Additionally, 4Kscore was also associated with changes in tumor volume. Conclusions: Our preliminary findings suggest that the 4Kscore may be a useful tool in the decision-making process to perform a confirmatory Bx in active surveillance management

    Variabilidad dentro del Registro Nacional multicéntrico en Vigilancia Activa; cuestionario a urólogos.

    No full text
    Our main objective was to report the current use of active surveillance in Spain and to identify areas for potential improvement. A questionnaire generated by the Platform for Multicentre Studies of the Spanish Urology Association (AEU/PIEM/2014/0001, NCT02865330) was sent to all associate researchers from January to March 2016. The questionnaire included 7 domains covering various aspects of active surveillance. Thirty-three of the 41 associate researchers responded to the questionnaire. Active surveillance is mainly controlled by the urology departments (87.9%). There was considerable heterogeneity in the classical clinical-pathological variables as selection criteria. Only 36.4% of the associate researchers used prostate-specific antigen density (PSAd). Multiparametric magnetic resonance imaging (mpMRI) was clearly underused as initial staging (6%). Only 27.3% of the researchers stated that their radiology colleagues had a high level of experience in mpMRI. In terms of the confirmation biopsy, most of the centres used the transrectal pathway, and only 2 out of 33 used the transperineal pathway or fusion software. Half of the researchers interviewed applied active treatment when faced with disease progression to Gleason 7 (3+4). There was no consensus on when to transition to an observation strategy. The study showed the underutilisation of informed consent and quality-of-life questionnaires. PSAd was not included as a decisive element in the initial strategy for most researchers. There was a lack of confidence in the urologists' mpMRI experience and an underutilisation of the transperineal pathway. There was also no consensus on the follow-up protocols and active treatment criteria, confirming the need for prospective studies to analyse the role of mpMRI and biomarkers

    Characterization of the responses to saline stress in the symbiotic green microalga Trebouxia sp. TR9

    Full text link
    [EN] Main conclusion. For the first time we provide a study on the physiological, ultrastructural and molecular effects of salt stress on a terrestrial symbiotic green microalga, Trebouxia sp. TR9. Although tolerance to saline conditions has been thoroughly studied in plants and, to an extent, free-living microalgae, scientific data regarding salt stress on symbiotic lichen microalgae is scarce to non-existent. Since lichen phycobionts are capable of enduring harsh, restrictive and rapidly changing environments, it is interesting to study the metabolic machinery operating under these extreme conditions. We aim to determine the effects of prolonged exposure to high salt concentrations on the symbiotic phycobiont Trebouxia sp. TR9, isolated from the lichen Ramalina farinacea. Our results suggest that, when this alga is confronted with extreme saline conditions, the cellular structures are affected to an extent, with limited chlorophyll content loss and photosynthetic activity remaining after 72h of exposure to 5M NaCl. Furthermore, this organism displays a rather different molecular response compared to land plants and free-living halophile microalgae, with no noticeable increase in ABA levels and ABA-related gene expression until the external NaCl concentration is raised to 3M NaCl. Despite this, the ABA transduction pathway seems functional, since the ABA-related genes tested are responsive to exogenous ABA. These observations could suggest that this symbiotic green alga may have developed alternative molecular pathways to cope with highly saline environments.Supported by the Ministerio de Economía y Competitividad (MINECO, Spain) and FEDER (CGL2016-79158-P), and the PROMETEO Excellence in Research Program (Generalitat Valenciana, Spain) (PROMETEO/2017/039). Funding for Ernesto Hinojosa-Vidal was also provided by MINECO (BES-2013-065511).Hinojosa-Vidal, E.; Marco, F.; Martínez-Alberola, F.; Escaray, F.; García-Breijo, F.; Reig-Armiñana, J.; Carrasco, P.... (2018). Characterization of the responses to saline stress in the symbiotic green microalga Trebouxia sp. TR9. Planta. 248(6):1473-1486. https://doi.org/10.1007/s00425-018-2993-8S147314862486Álvarez R, del Hoyo A, Díaz-Rodríguez C et al (2015) Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae. Microb Ecol 69:698–709. https://doi.org/10.1007/s00248-014-0524-0Archibald PA (1977) Physiological characteristics of Trebouxia (Chlorophyceae, Chlorococcales) and Pseudotrebouxia (Chlorophyceae, Chlorosarcinales). Phycologia 16:295–300. https://doi.org/10.2216/i0031-8884-16-3-295.1Armstrong RA (2017) Adaptation of lichens to extreme conditions. In: Kumar V, Shukla S, Kumar N (eds) Plant adaptation strategies in changing environment. Springer Singapore, Singapore, pp 1–27Arup U (1995) Littoral species of Caloplaca in North America: a summary and a key. Bryologist 98:129–140. https://doi.org/10.2307/3243649Aschenbrenner IA, Cernava T, Berg G, Grube M (2016) Understanding microbial multi-species symbioses. Front Microbiol 7:180. https://doi.org/10.3389/fmicb.2016.00180Balarinová K, Barták M, Hazdrová J, Hájek J, Jílková J (2014) Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthetica 52:538–547. https://doi.org/10.1007/s11099-014-0060-7Biosca EG, Flores R, Santander RD, Díez-Gil JL, Barreno E (2016) Innovative approaches using lichen enriched media to improve isolation and culturability of lichen associated bacteria. PLoS One 11:e0160328. https://doi.org/10.1371/journal.pone.0160328Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species. Phycol Stud 44(1):1–95Borges L, Caldas S, Montes D’Oca MG, Abreu PC (2016) Effect of harvesting processes on the lipid yield and fatty acid profile of the marine microalga Nannochloropsis oculata. Aquac Rep 4:164–168. https://doi.org/10.1016/j.aqrep.2016.10.004Brandt A, Posthoff E, de Vera J-P, Onofri S, Ott S (2016) Characterisation of growth and ultrastructural effects of the Xanthoria elegans photobiont after 1.5 years of space exposure on the International Space Station. Orig Life Evol Biosph 46:311–321. https://doi.org/10.1007/s11084-015-9470-1Brányiková I, Maršálková B, Doucha J et al (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776. https://doi.org/10.1002/bit.23016Callis J, Carpenter T, Sun CW, Vierstra RD (1995) Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics 139:921–939Campenni L, Nobre BP, Santos CA et al (2013) Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol 97:1383–1393. https://doi.org/10.1007/s00253-012-4570-6Casano LM, del Campo EM, García-Breijo FJ et al (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818. https://doi.org/10.1111/j.1462-2920.2010.02386.xChettri M, Cook C, Vardaka E, Sawidis T, Lanaras L (1998) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ Exp Bot 39:1–10. https://doi.org/10.1016/S0098-8472(97)00024-5Cornillon P-A (2012) R for statistics. CRC Press, Boca RatonCowan AK, Rose PD, Horne LG (1992) Dunaliella salina: a model system for studying the response of plant cells to stress. J Exp Bot 43:1535–1547. https://doi.org/10.1093/jxb/43.12.1535Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17. https://doi.org/10.1104/pp.105.063743Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52. https://doi.org/10.1016/j.biotechadv.2013.09.006Delmail D, Labrousse P, Hourdin P et al (2013) Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte. Int J Phytoremediation 15:647–662. https://doi.org/10.1080/15226514.2012.723068Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335. https://doi.org/10.1016/j.apenergy.2011.03.012Duarte AWF, Passarini MRZ, Delforno TP et al (2016) Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Environ Microbiol Rep 8:874–885. https://doi.org/10.1111/1758-2229.12452Durgbanshi A, Arbona V, Pozo O et al (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography–electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442. https://doi.org/10.1021/JF050884BEinspahr KJ, Maeda M, Thompson GA (1988) Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock. J Cell Biol 107:529–538. https://doi.org/10.1083/JCB.107.2.529Gasulla F, de Nova PG, Esteban-Carrasco A et al (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208. https://doi.org/10.1007/s00425-009-1019-yGasulla F, Guéra A, Barreno E (2010) A simple and rapid method for isolating lichen photobionts. Symbiosis 51:175–179. https://doi.org/10.1007/s13199-010-0064-4Gómez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talon M (2002) Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240. https://doi.org/10.1007/s00344-002-0013-4Green TGA, Brabyn L, Beard C, Sancho LG (2012) Extremely low lichen growth rates in Taylor Valley, Dry Valleys, continental Antarctica. Polar Biol 35:535–541. https://doi.org/10.1007/s00300-011-1098-7Grube M, Blaha J (2005) Halotolerance and lichen symbioses. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Berlin, pp 471–488Guéra A, Calatayud A, Sabater B, Barreno E (2004) Involvement of the thylakoidal NADH-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (Hordeum vulgare L.) seedlings. J Exp Bot 56:205–218. https://doi.org/10.1093/jxb/eri024Gustavs L, Eggert A, Michalik D, Karsten U (2010) Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. Protoplasma 243:3–14. https://doi.org/10.1007/s00709-009-0060-9Hauser F, Rainer W, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21:346–355. https://doi.org/10.1016/j.cub.2011.03.015.HauserHayashi H, Alia L, Mustardy L, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycine betaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142. https://doi.org/10.1046/j.1365-313X.1997.12010133.xHiremath S, Mathad P (2010) Impact of salinity on the physiological and biochemical traits of Chlorella vulgaris Beijerinck. J Algal Biomass Util 1:51–59Hirsch R, Hartung W, Gimmler H (1989) Abscisic acid content of algae under stress. Bot Acta 102:326–334. https://doi.org/10.1111/j.1438-8677.1989.tb00113.xJameson P (1993) Plant hormones in the algae. Prog Phycol Res 9:239–279Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46. https://doi.org/10.1093/nar/gkm234Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth and Bisby’s dictionary of the fungi, 9th edn. CABI Publishing, Wallingford, UKKline KG, Barrett-Wilt GA, Sussman MR (2010) In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci USA 107:15986–15991. https://doi.org/10.1073/pnas.1007879107Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K (1993) Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175–182. https://doi.org/10.1016/0378-1119(93)90266-6Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. https://doi.org/10.1146/annurev.pp.42.060191.001525Lan SB, Wu L, Zhang DL, Hu CX, Liu YD (2010) Effects of drought and salt stresses on man-made cyanobacterial crusts. Eur J Soil Biol 46:381–386. https://doi.org/10.1016/j.ejsobi.2010.08.002Leavitt SD, Kraichak E, Nelsen MP et al (2015) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol Ecol 24:3779–3797. https://doi.org/10.1111/mec.13271Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/METH.2001.1262Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282. https://doi.org/10.1016/j.tplants.2015.01.006Malaspina P, Giordani P, Pastorino G, Modenesi P, Mariotti MG (2015) Interaction of sea salt and atmospheric pollution alters the OJIP fluorescence transient in the lichen Pseudevernia furfuracea (L.) Zopf. Ecol Indic 50:251–257. https://doi.org/10.1016/j.ecolind.2014.11.015Mane AV, Karadge BA, Samant JS (2010) Salt stress induced alteration in photosynthetic pigments and polyphenols of Pennisetum alopecuroides (L.). J Ecophysiol Occup Health 10:177–182. https://doi.org/10.18311/jeoh/2010/18339Maphangwa KW, Musil CF, Raitt L, Zedda L (2012) Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem. Oecologia 169:257–268. https://doi.org/10.1007/s00442-011-2184-9Margulis L, Barreno E (2003) Looking at lichens. Bioscience 53:776–778. https://doi.org/10.1641/0006-3568(2003)053%5b0776:lal%5d2.0.co;2Maršálek B, Zahradníčková H, Hronková M (1992) Extracellular abscisic acid produced by cyanobacteria under salt stress. J Plant Physiol 139:506–508. https://doi.org/10.1016/S0176-1617(11)80503-1Martínez-Alberola F (2015) Genome characterization of the symbiotic microalga Trebouxia sp. TR9 isolated from the lichen Ramalina farinacea (L.) Ach. by means of NGS techniques. PhD Dissertation. Universitat de València. http://roderic.uv.es/handle/10550/48824Mishra A, Jha B (2009) Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol 100:3382–3386. https://doi.org/10.1016/j.biortech.2009.02.006Molins A, Moya P, García-Breijo FJ, Reig-Arminana J, Barreno E (2018) A multi-tool approach to assess microalgal diversity in lichens: isolation, Sanger sequencing, HTS and ultrastructural correlations. Lichenologist 50:123–138. https://doi.org/10.1017/S0024282917000664Moya P, Molins A, Martínez-Alberola F, Muggia L, Barreno E (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS One 12:e0175091. https://doi.org/10.1371/journal.pone.0175091Nash TH III, Lange OL (1988) Responses of lichens to salinity: concentration and time-course relationships and variability among Californian species. New Phytol 109:361–367. https://doi.org/10.1111/j.1469-8137.1988.tb04206.xNeale PJ, Melis A (1989) Salinity-stress enhances photoinhibition of photosynthesis in Chlamydomonas reinhardtii. J Plant Physiol 134:619–622. https://doi.org/10.1016/S0176-1617(89)80158-0Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11. https://doi.org/10.1093/aob/mcw191Qiao K, Takano T, Liu S (2015) Discovery of two novel highly tolerant NaHCO3 Trebouxiophytes: identification and characterization of microalgae from extreme saline–alkali soil. Algal Res 9:245–253. https://doi.org/10.1016/j.algal.2015.03.023Ruzin SE (2000) Plant microtechnique and microscopy. New Phytol 148:57–58Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874. https://doi.org/10.1126/science.276.5320.1872Škaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol Phylogenet Evol 54:36–46. https://doi.org/10.1016/J.YMPEV.2009.09.035Spribille T, Tuovinen V, Resl P et al (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492. https://doi.org/10.1126/science.aaf8287Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165. https://doi.org/10.1104/pp.108.132407Takagi M, Karseno YT (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226. https://doi.org/10.1263/jbb.101.223Takahagi T, Yamamoto Y, Kinoshita Y, Takeshita S, Yamada T (2002) Inhibitory effects of sodium chloride on induction of tissue cultures of lichens of Ramalina species. Plant Biotechnol 19:53–55. https://doi.org/10.5511/plantbiotechnology.19.53Tietz A, Kasprik W (1986) Identification of abscisic acid in a green alga. Biochem Physiol Pflanz 181:269–274. https://doi.org/10.1016/S0015-3796(86)80093-2Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176. https://doi.org/10.1016/j.cj.2016.01.010Wellburn AR, Lichtenthaler H (1984) Formulae and program to determine total carotenoids and chlorophylls A and B of leaf extracts in different solvents. In: Sybesma C (ed) Advances in photosynthesis research. Springer, Dordrecht, pp 9–12Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119. https://doi.org/10.1016/j.fcr.2005.08.01
    corecore