17,737 research outputs found

    Color transparency and short-range correlations in exclusive pion photo- and electroproduction from nuclei

    Full text link
    A relativistic and quantum mechanical framework to compute nuclear transparencies for pion photo- and electroproduction reactions is presented. Final-state interactions for the ejected pions and nucleons are implemented in a relativistic eikonal approach. At sufficiently large ejectile energies, a relativistic Glauber model can be adopted. At lower energies, the framework possesses the flexibility to use relativistic optical potentials. The proposed model can account for the color-transparency (CT) phenomenon and short-range correlations (SRC) in the nucleus. Results are presented for kinematics corresponding to completed and planned experiments at Jefferson Lab. The influence of CT and SRC on the nuclear transparency is studied. Both the SRC and CT mechanisms increase the nuclear transparency. The two mechanisms can be clearly separated, though, as they exhibit a completely different dependence on the hard scale parameter. The nucleon and pion transparencies as computed in the relativistic Glauber approach are compared with optical-potential and semi-classical calculations. The similarities in the trends and magnitudes of the nuclear transparencies indicate that they are not subject to strong model dependencies.Comment: 33 pages, 14 figure

    On the Critical Behaviour of Heat Conducting Sphere out of Hydrostatic Equilibrium

    Full text link
    We comment further on the behaviour of a heat conducting fluid when a characteristic parameter of the system approaches a critical value.Comment: 4 pages, emTex (LaTex 2.09), submitted to Classical and Quantum Gravity (Comments and Addenda

    Superscaling Predictions for Neutral Current Quasielastic Neutrino-Nucleus Scattering

    Get PDF
    The application of superscaling ideas to predict neutral-current (NC) quasielastic (QE) neutrino cross sections is investigated. Results obtained within the relativistic impulse approximation (RIA) using the same relativistic mean field potential (RMF) for both initial and final nucleons -- a model that reproduces the experimental (e,e') scaling function -- are used to illustrate the ideas involved. While NC reactions are not so well suited for scaling analyses, to a large extent the RIA-RMF predictions do exhibit superscaling. Independence of the scaled response on the nuclear species is very well fulfilled. The RIA-RMF NC superscaling function is in good agreement with the experimental (e,e') one. The idea that electroweak processes can be described with a universal scaling function, provided that mild restrictions on the kinematics are assumed, is shown to be valid.Comment: 4 pages, 4 figures, published in PR

    Improved estimate of electron capture rates on nuclei during stellar core collapse

    Full text link
    Electron captures on nuclei play an important role in the dynamics of the collapsing core of a massive star that leads to a supernova explosion. Recent calculations of these capture rates were based on microscopic models which account for relevant degrees of freedom. Due to computational restrictions such calculations were limited to a modest number of nuclei, mainly in the mass range A=45-110. Recent supernova simulations show that this pool of nuclei, however, omits the very neutron-rich and heavy nuclei which dominate the nuclear composition during the last phase of the collapse before neutrino trapping. Assuming that the composition is given by Nuclear Statistical Equilibrium we present here electron capture rates for collapse conditions derived from individual rates for roughly 2700 individual nuclei. For those nuclei which dominate in the early stage of the collapse, the individual rates are derived within the framework of microscopic models, while for the nuclei which dominate at high densities we have derived the rates based on the Random Phase Approximation with a global parametrization of the single particle occupation numbers. In addition, we have improved previous rate evaluations by properly including screening corrections to the reaction rates into account.Comment: 32 pages, 13 figures, 1 table; elsart; to appear in Nuclear Physics

    Thermal Conduction in Systems out of Hydrostatic Equilibrium

    Get PDF
    We analyse the effects of thermal conduction in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of thermal relaxation time. It is obtained that the resulting evolution will critically depend on a parameter defined in terms of thermodynamic variables, which is constrained by causality requirements.Comment: 16 pages, emTex (LaTex 2.09). To appear in Classical and Quantum Gravit
    corecore