1,501 research outputs found

    Surface treatment with UV-ozone to improve adhesion of vulcanized rubber formulated with an excess of processing oil

    Get PDF
    An excess of processing oil was intentionally added in the formulation of vulcanized styrene-butadiene rubber for analyzing the effect on the treatment with UV radiation combined with ozone (UV-ozone) in improving the adhesion to waterborne polyurethane adhesive in footwear. Due to the excess of processing oil in the rubber, poor adhesion was expected. Both the length of the treatment and the distance between the UV radiation source to the rubber surface were studied, and the effects of the treatment on the surface chemistry, wettability and surface energy, and topography of the rubber were analyzed. The treatment of the rubber with UV-ozone removed hydrocarbon moieties and zinc stearate from the surface, and surface oxidation (C-O, C=O and COO- groups formation) occurred. As a consequence, improved wettability and increased surface energy (mainly due to the polar component of the surface energy) were obtained. The increase in the length of treatment and for a distance of 3–5 cm from the rubber to the UV radiation source favored the effectiveness of the UV-ozone treatment. Besides, whereas the UV-ozone treatment for 3 min produced the ablation of surface contaminants mainly, longer lengths of treatment (i.e., 6–9 min) caused roughness and cracks on the rubber surface. The UV-ozone treatment also caused heating of the surface. Finally, the treatment with UV-ozone increased the adhesion of the rubber to waterborne polyurethane adhesive, the highest adhesion was obtained in the joints made with UV-ozone treated rubber for 3 and 6 min at a UV radiation source-rubber surface distance of 5 cm

    Viscoelastic and Adhesion Properties of New Poly(Ether-Urethane) Pressure-Sensitive Adhesives

    Get PDF
    New thermoplastic poly(ether-urethane) (TPUs) pressure-sensitive adhesives (PSAs) have been synthesized with the prepolymer method by reacting methylene diisocyanate, different blends of polyether diols—poly(propyleneglycol) (PPG) and poly(tetramethylene ether glycol) (PTMEG)—and 1,4-butanediol chain extender; different NCO/OH ratios have been used. The properties of the TPU PSAs depended on both the NCO/OH ratio and the PTMEG content in the blend. The addition of PTMEG polyol produced semicrystalline regions in the soft segments of the TPUs and inhibited the mobility of the polymeric chains; this led to improved cohesion of the TPU PSAs; however, similar degrees of phase separation were obtained in all TPUs synthesized with different PTMEG contents. The increase of the PTMEG content in the polyols blend improved both the cohesion and the adhesion but decreased the tack of the TPU PSAs. The optimal balance between the adhesion and cohesion properties was found in the TPU PSA synthesized with 50 wt% PPG + 50 wt% PTMEG and an NCO/OH ratio of 1.20

    Influence of the Surface Chemistry of Graphene Oxide on the Structure–Property Relationship of Waterborne Poly(urethane urea) Adhesive

    Get PDF
    Small amounts—0.04 wt.%—graphene oxide derivatives with different surface chemistry (graphene oxide—GO-, amine-functionalized GO—A-GO-, reduced GO—r-GO) were added during prepolymer formation in the synthesis of waterborne poly(urethane urea) dispersions (PUDs). Covalent interactions between the surface groups on the graphene oxide derivatives and the end NCO groups of the prepolymer were created, these interactions differently altered the degree of micro-phase separation of the PUDs and their structure–properties relationships. The amine functional groups on the A-GO surface reacted preferentially with the prepolymer, producing new urea hard domains and higher percentage of soft segments than in the PUD without GO derivative. All GO derivatives were well dispersed into the PU matrix. The PUD without GO derivative showed the most noticeable shear thinning and the addition of the GO derivative reduced the extent of shear thinning differently depending on its functional chemistry. The free urethane groups were dominant in all PUs and the addition of the GO derivative increased the percentage of the associated by hydrogen bond urethane groups. As a consequence, the addition of GO derivative caused a lower degree of micro-phase separation. All PUs containing GO derivatives exhibited an additional thermal decomposition at 190–206 °C which was ascribed to the GO derivative-poly(urethane urea) interactions, the lowest temperature corresponded to PU+A-GO. The PUs exhibited two structural relaxations, their temperatures decreased by adding the GO derivative, and the values of the maximum of tan delta in PU+r-GO and PU+A-GO were significantly higher than in the rest. The addition of the GO derivative increased the elongation-at-break, imparted some toughening, and increased the adhesion of the PUD. The highest T-peel strength values corresponded to the joints made with PUD+GO and PUD+r-GO, and a rupture of the substrate was obtained

    Addition of Graphene Oxide in Different Stages of the Synthesis of Waterborne Polyurethane-Urea Adhesives and Its Influence on Their Structure, Thermal, Viscoelastic and Adhesion Properties

    Get PDF
    In this study, 0.04 wt % graphene oxide (GO) was added in different stages (before and after prepolymer formation, and during water addition) of the synthesis of waterborne polyurethane-urea dispersions (PUDs) prepared by using the acetone method. The structural, thermal, mechanical, viscoelastic, surface and adhesion properties of the polyurethane-ureas (PUUs) containing 0.04 wt % GO were studied. The addition of GO before and after prepolymer formation produced covalent bonds between the GO sheets and the NCO groups of the isocyanate, whereas the GO sheets were trapped between the polyurethane chains when added during water addition step. As a consequence, depending on the stage of the PUD synthesis in which GO was added, the degree of micro-phase separation between the hard and soft segments changed differently. The addition of GO before prepolymer formation changed more efficiently the polyurethane-urea structure, i.e., the covalently bonded GO sheets disturbed the interactions between the hard segments causing lower percentage of free urethane groups, higher crystallinity, lower storage modulus, higher yield stress and T-peel strength. The interactions between the GO sheets and the polymeric chains have been evidenced by plate-plate rheology, thermal gravimetric analysis and spectroscopy. On the other hand, physical interactions between GO and the polyurethane-urea chains were produced when GO was added in water during the synthesis, i.e., GO was acting as a nanofiller, which justified the improved mechanical properties and high lap-shear strength, but poor T-peel strength

    Thermoplastic polyurethane coatings made with mixtures of polyethers of different molecular weights with pressure sensitive adhesion property

    Get PDF
    Thermoplastic polyurethane (PU) coatings with pressure sensitive adhesion property were synthetized by reacting 4,4′-diphenylmethane diisocyanate (MDI) with 1,4-butanediol and mixtures of polypropylene glycols (PPGs) of different molecular weights (1000 and 2000 Da). Good tack at 10–37 °C was obtained in PU coatings prepared with PPG2000 + PPG1000 mixtures containing 50 wt% or more PPG2000. The pressure sensitive adhesion properties of the PU coatings were related to their minor content of bonded urethane groups and important degree of phase separation. Furthermore, these PU coatings followed Dahlquist criterion, they showed low glass transition temperatures, high tack, and low 180° peel strength. Therefore, the PU coatings had potential as pressure sensitive adhesives. Finally, PU coating made with PPG of molecular weight 1000 Da did not show pressure sensitive adhesion property.Authors thanks IfarmaPyc S.L. Company (Albacete, Spain) for financial support

    Structural and adhesion properties of waterborne polyurethane adhesives containing nanosilica dispersion obtained with different physical mixing procedures

    Get PDF
    Nanosilica dispersion was added to waterborne polyurethane dispersion by using three different physical mixing procedures differing in the flow regime (tangential, laminar, radial) and the stirring rate (300–2400 rpm). The influence of the physical mixing procedure on the structural, thermal, rheological, mechanical, surface and adhesion properties of the polyurethanes (PUs) containing 1 wt% nanosilica was evaluated. The nanosilica in the dispersion was functionalized with acrylic moieties and showed high surface tension and negative Z potential values. The PU + nanosilica blend made with higher shear rate and laminar flow regime showed high homogeneous dispersion of the nanosilica particles and greater extent of intercalation between the soft segments of the polyurethane, this led to higher thermal stability. Unexpectedly, the better dispersion of the nanosilica in the PU matrix decreased the wettability of the PU + nanosilica materials due to the migration of acrylic moieties from the nanosilica particles to the surface. As a consequence, a decrease of the final T-peel strength was found. However, the single lap-shear strength did not change by adding nanosilica because of the scarce improvement of the mechanical properties in the PU + nanosilica materials.This study was partially supported by the Research Vice-president Office (Vicerrectorado de Investigación) of the University of Alicante (grant no. AII21-07)

    Improvement of adhesion and paint ability of EVA copolymers with different vinyl acetate contents by treatment with UV-ozone

    Get PDF
    The surface modifications produced by UV-ozone treatment of two ethylene-vinyl acetate (EVA) copolymers containing 12 and 20 wt% vinyl acetate (EVA12 and EVA20 respectively) were studied. The treatment with UV-ozone improved the wettability of both EVAs due to the creation of new carbon–oxygen moieties. The extent of these modifications increased with increasing length of the treatment and the modifications produced in EVA20 were produced for shorter lengths of treatment. The UV-ozone treatment also created roughness and heterogeneities on the EVA surfaces. Whereas roughness formation prevailed on the UV-ozone treated EVA12, important ablation was dominant on the treated EVA20. T-peel strength values in joints made with polychloroprene adhesive increased when the EVAs were treated with UV-ozone. Short length of UV-ozone treatment (1 min) produced higher T-peel strength in joints made with EVA20 whereas higher T-peel strength values in joints made with EVA12 were obtained after treatment for 5–7.5 min in which a cohesive failure into a weak boundary layer on the treated EVA surface was found. Furthermore, the adhesion of UV-ozone treated EVA20 to acrylic paint increased. Finally, the ageing resistance of the treated EVA/polychloroprene adhesive joints was good and the surface modifications on the UV-ozone treated EVAs lasted for 24 h after treatment at least.Financial support from Research Spanish Agency MICYT (projects MAT2002-02463 and PETRI95-0578-OP) is acknowledged

    Influencia de las nanopartículas de sílice en polímeros termoplásticos

    Get PDF
    En este trabajo se prepararon sílices con distinto grado de hidrofilicidad para reducir el grado de interacción con el poliuretano y analizar la incidencia en las propiedades de los materiales compuestos obtenidos. Se incorporó una sílice pirogénica hidrófila a adhesivos de poliuretano con distinta relación NCO/OH donde el grado de separación de fases se vio favorecido en todos los poliuretanos, indicando una posible interacción de los grupos silanol de la sílice mediante enlaces de hidrógeno con el polímero. Por lo tanto, debería existir una variación de propiedades en los poliuretanos como respuesta a la presencia de la sílice dispersada.In this work we have prepared silicas with different hydrophilicity to reduce the degree of interaction with the polyurethane and analyze the effect on the properties of the composites obtained. A hydrophilic pyrogenic silica was incorporated in different polyurethane adhesives with different relation NCO/OH where the degree of phase separation is enhanced at all polyurethanes, indicating a potential interaction of the silanol groups of the silica by hydrogen bonding with the polymer. Therefore, there should be a variation in properties as polyurethanes response to the presence of the dispersed silica

    Structure–Properties Relationship in Waterborne Poly(Urethane-Urea)s Synthesized with Dimethylolpropionic Acid (DMPA) Internal Emulsifier Added before, during and after Prepolymer Formation

    Get PDF
    Dimethylolpropionic acid (DMPA) internal emulsifier has been added before, during and after prepolymer formation in the synthesis of waterborne poly(urethane-urea)s (PUDs) and their structure–properties relationships have been assessed. PUDs were characterized by pH, viscosity and particle size measurements, and the structure of the poly(urethane-urea) (PU) films was assessed by infra-red spectroscopy, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis, plate–plate rheology and dynamic mechanical thermal analysis. The adhesion properties of the PUDs were measured by cross-hatch adhesion and T-peel test. The lowest pH value and the highest mean particle size were found in the PUD made by adding DMPA after prepolymer formation, all PUDs showed relatively ample mono-modal particle size distributions. The highest viscosity and noticeable shear thinning were obtained in the PUD made by adding DMPA during prepolymer formation. Depending on the stage of addition of DMPA, the length of the prepolymer varied and the PU films showed different degree of micro-phase separation. Because the shortest prepolymer was formed in the PU made with DMPA added before prepolymer, this PU film showed the lowest storage moduli and early melting indicating higher degree of micro-phase separation. The highest storage modulus, later melting, higher temperature and lower modulus at the cross between the storage and loss moduli corresponded to the PU made by adding DMPA after prepolymer formation, because the longer prepolymer produced during synthesis. The lowest thermal stability corresponded to the PU made by adding DMPA during prepolymer formation and the structures of all PU films were dominated by the soft domains, the main structural differences derived from the hard domains. Whereas DMPA-isophorone diisocyanate (IPDI) urethane and urea hard domains were created in the PU film made by adding DMPA during prepolymer formation, the other PU films showed DMPA-IPDI, polyester-IPDI and two different DMPA-IPDI-polyester hard domains. Finally, the adhesion properties of the PUDs and PU coatings were excellent and they were not influenced by the structural differences caused by adding DMPA in different stages of the synthesis

    Viscoelastic and adhesion properties of hot-melts made with blends of ethylene-co-n-butyl acrylate (EBA) and ethylene-co-vinyl acetate (EVA) copolymers

    Get PDF
    Several hot-melts (HMAs) were prepared by using blends of ethylene-co-n-butyl acrylate (EBA) and ethylene-co-vinyl acetate (EVA) copolymers - EBA/EVA. HMAs were prepared with mixtures of EVA copolymers with 18 (EVA18) and 27 (EVA27) wt% vinyl acetate contents and EBA copolymer with 27 wt% n-butyl acrylate, polyterpene resin and mixture of microcrystalline and Fischer-Tropsch waxes. HMAs made with EBA/EVA blends showed lower viscosities and reduced shear thinning than the ones made with EBA or EVA due to differences in compatibility, but both the set time and the open time were not affected as they depended mainly on the wax nature and amount. The increase of the vinyl acetate (VA) content in EVA copolymer reduced the crystallinity of the EBA/EVA blends. Even EBA copolymer was more compatible with EVA27 than with EVA18 (the α- and β-transitions shown in DMTA plots were closer) and the compatibility did not vary with the EBA content in the blends. The addition of polyterpene resin and the mixture of waxes decreased the compatibility of the EBA/EVA blends, the higher compatibility was observed for the HMAs made with only one copolymer. The tack of the HMAs depended on their EBA/EVA contents, EBA/EVA27 HMAs showed broader temperature interval with higher tack, while the tack of EBA/EVA18 HMAs blend decreased and the temperature interval with tack was shortened and shifted to lower temperatures. Adhesion to polypropylene film was improved in HMAs made with 75 wt% EBA/25 wt% EVA18 and 50–75 wt% EBA/50-25 wt% EVA27. The adhesion to aluminum film of EBA or EVA hot melts was improved only in the joints made with EBA/EVA 27 HMAs, more noticeably when they contained higher EBA content.Financial support by Technology and New Ventures Department of Repsol S.A. (Madrid, Spain) (grant no. REPSOL5-12I) is acknowledged
    • …
    corecore