5 research outputs found

    Holomorphic Simplicity Constraints for 4d Spinfoam Models

    Full text link
    Within the framework of spinfoam models, we revisit the simplicity constraints reducing topological BF theory to 4d Riemannian gravity. We use the reformulation of SU(2) intertwiners and spin networks in term of spinors, which has come out from both the recently developed U(N) framework for SU(2) intertwiners and the twisted geometry approach to spin networks and spinfoam boundary states. Using these tools, we are able to perform a holomorphic/anti-holomorphic splitting of the simplicity constraints and define a new set of holomorphic simplicity constraints, which are equivalent to the standard ones at the classical level and which can be imposed strongly on intertwiners at the quantum level. We then show how to solve these new holomorphic simplicity constraints using coherent intertwiner states. We further define the corresponding coherent spin network functionals and introduce a new spinfoam model for 4d Riemannian gravity based on these holomorphic simplicity constraints and whose amplitudes are defined from the evaluation of the new coherent spin networks.Comment: 27 page

    Classical Setting and Effective Dynamics for Spinfoam Cosmology

    Full text link
    We explore how to extract effective dynamics from loop quantum gravity and spinfoams truncated to a finite fixed graph, with the hope of modeling symmetry-reduced gravitational systems. We particularize our study to the 2-vertex graph with N links. We describe the canonical data using the recent formulation of the phase space in terms of spinors, and implement a symmetry-reduction to the homogeneous and isotropic sector. From the canonical point of view, we construct a consistent Hamiltonian for the model and discuss its relation with Friedmann-Robertson-Walker cosmologies. Then, we analyze the dynamics from the spinfoam approach. We compute exactly the transition amplitude between initial and final coherent spin networks states with support on the 2-vertex graph, for the choice of the simplest two-complex (with a single space-time vertex). The transition amplitude verifies an exact differential equation that agrees with the Hamiltonian constructed previously. Thus, in our simple setting we clarify the link between the canonical and the covariant formalisms.Comment: 38 pages, v2: Link with discretized loop quantum gravity made explicit and emphasize

    Generating Functions for Coherent Intertwiners

    Full text link
    We study generating functions for the scalar products of SU(2) coherent intertwiners, which can be interpreted as coherent spin network evaluations on a 2-vertex graph. We show that these generating functions are exactly summable for different choices of combinatorial weights. Moreover, we identify one choice of weight distinguished thanks to its geometric interpretation. As an example of dynamics, we consider the simple case of SU(2) flatness and describe the corresponding Hamiltonian constraint whose quantization on coherent intertwiners leads to partial differential equations that we solve. Furthermore, we generalize explicitly these Wheeler-DeWitt equations for SU(2) flatness on coherent spin networks for arbitrary graphs.Comment: 31 page
    corecore