10 research outputs found

    Periodic analogues of the Kerr solutions: a numerical study

    Full text link
    In recent years black hole configurations with non standard topology or with non-standard asymptotic have gained considerable attention. In this article we carry out numerical investigations aimed to find periodic coaxial configurations of co-rotating 3+1 vacuum black holes, for which existence and uniqueness has not yet been theoretically proven. The aimed configurations would extend Myers/Korotkin-Nicolai's family of non-rotating (static) coaxial arrays of black holes. We find that numerical solutions with a given value for the area A and for the angular momentum J of the horizons appear to exist only when the separation between consecutive horizons is larger than a certain critical value that depends only on A and |J|. We also establish that the solutions have the same Lewis's cylindrical asymptotic as Stockum's infinite rotating cylinders. Below the mentioned critical value the rotational energy appears to be too big to sustain a global equilibrium and a singularity shows up at a finite distance from the bulk. This phenomenon is a relative of Stockum's asymptotic's collapse, manifesting when the angular momentum (per unit of axial length) reaches a critical value compared to the mass (per unit of axial length), and that results from a transition in the Lewis's class of the cylindrical exterior solution. This remarkable phenomenon seems to be unexplored in the context of coaxial arrays of black holes. Ergospheres and other global properties are also presented in detail.Comment: 25 page

    Black hole Area-Angular momentum inequality in non-vacuum spacetimes

    Full text link
    We show that the area-angular momentum inequality A\geq 8\pi|J| holds for axially symmetric closed outermost stably marginally trapped surfaces. These are horizon sections (in particular, apparent horizons) contained in otherwise generic non-necessarily axisymmetric black hole spacetimes, with non-negative cosmological constant and whose matter content satisfies the dominant energy condition.Comment: 5 pages, no figures, updated to match published versio

    Linear perturbations for the vacuum axisymmetric Einstein equations

    Full text link
    In axial symmetry, there is a gauge for Einstein equations such that the total mass of the spacetime can be written as a conserved, positive definite, integral on the spacelike slices. This property is expected to play an important role in the global evolution. In this gauge the equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. Due to the rather peculiar properties of the system, the local in time existence has proved to resist analysis by standard methods. To analyze the principal part of the equations, which may represent the main source of the difficulties, we study linear perturbation around the flat Minkowski solution in this gauge. In this article we solve this linearized system explicitly in terms of integral transformations in a remarkable simple form. This representation is well suited to obtain useful estimates to apply in the non-linear case.Comment: 13 pages. We suppressed the statements about decay at infinity. The proofs of these statements were incomplete. The complete proofs will require extensive technical analysis. We will studied this in a subsequent work. We also have rewritten the introduction and slighted changed the titl

    Area-charge inequality for black holes

    Full text link
    The inequality between area and charge A≥4πQ2A\geq 4\pi Q^2 for dynamical black holes is proved. No symmetry assumption is made and charged matter fields are included. Extensions of this inequality are also proved for regions in the spacetime which are not necessarily black hole boundaries.Comment: 21 pages, 2 figure

    Proof of the area-angular momentum-charge inequality for axisymmetric black holes

    Full text link
    We give a comprehensive discussion, including a detailed proof, of the area-angular momentum-charge inequality for axisymmetric black holes. We analyze the inequality from several viewpoints, in particular including aspects with a theoretical interest well beyond the Einstein-Maxwell theory.Comment: 31 pages, 2 figure
    corecore