1,770 research outputs found

    Fly-by-light flight control system technology development plan

    Get PDF
    The results of a four-month, phased effort to develop a Fly-by-Light Technology Development Plan are documented. The technical shortfalls for each phase were identified and a development plan to bridge the technical gap was developed. The production configuration was defined for a 757-type airplane, but it is suggested that the demonstration flight be conducted on the NASA Transport Systems Research Vehicle. The modifications required and verification and validation issues are delineated in this report. A detailed schedule for the phased introduction of fly-by-light system components has been generated. It is concluded that a fiber-optics program would contribute significantly toward developing the required state of readiness that will make a fly-by-light control system not only cost effective but reliable without mitigating the weight and high-energy radio frequency related benefits

    Staggered Flux Phase in a Model of Strongly Correlated Electrons

    Get PDF
    We present numerical evidence for the existence of a staggered flux (SF) phase in the half-filled two-leg t-U-V-J ladder, with true long-range order in the counter-circulating currents. The density-matrix renormalization-group (DMRG) / finite-size scaling approach, generalized to describe complex-valued Hamiltonians and wavefunctions, is employed. The SF phase exhibits robust currents at intermediate values of the interaction strength.Comment: Version to appear in Phys. Rev. Let

    Massive stars and the energy balance of the interstellar medium. II. The 35 solar mass star and a solution to the "missing wind problem"

    Full text link
    We continue our numerical analysis of the morphological and energetic influence of massive stars on their ambient interstellar medium for a 35 solar mass star that evolves from the main sequence through red supergiant and Wolf-Rayet phases, until it ultimately explodes as a supernova. We find that structure formation in the circumstellar gas during the early main-sequence evolution occurs as in the 60 solar mass case but is much less pronounced because of the lower mechanical wind luminosity of the star. Since on the other hand the shell-like structure of the HII region is largely preserved, effects that rely on this symmetry become more important. At the end of the stellar lifetime 1% of the energy released as Lyman continuum radiation and stellar wind has been transferred to the circumstellar gas. From this fraction 10% is kinetic energy of bulk motion, 36% is thermal energy, and the remaining 54% is ionization energy of hydrogen. The sweeping up of the slow red supergiant wind by the fast Wolf-Rayet wind produces remarkable morphological structures and emission signatures, which are compared with existing observations of the Wolf-Rayet bubble S308. Our model reproduces the correct order of magnitude of observed X-ray luminosity, the temperature of the emitting plasma as well as the limb brightening of the intensity profile. This is remarkable, because current analytical and numerical models of Wolf-Rayet bubbles fail to consistently explain these features. A key result is that almost the entire X-ray emission in this stage comes from the shell of red supergiant wind swept up by the shocked Wolf-Rayet wind rather than from the shocked Wolf-Rayet wind itself as hitherto assumed and modeled. This offers a possible solution to what is called the ``missing wind problem'' of Wolf-Rayet bubbles.Comment: 52 pages, 20 figures, 2 tables, accepted for publication in the Astrophysical Journa

    Broken time-reversal symmetry in strongly correlated ladder structures

    Get PDF
    We provide, for the first time, in a doped strongly correlated system (two-leg ladder), a controlled theoretical demonstration of the existence of a state in which long-range ordered orbital currents are arranged in a staggered pattern,coexisting with a charge density wave. The method used is the highly accurate density matrix renormalization group technique.This brings us closer to recent proposals that this order is realized in the enigmatic pseudogap phase of the cuprate high temperature superconductors.Comment: The version accepted in Phys. Rev. Lett. 5 pages, 6 eps figures, RevTex

    MapMySmoke : feasibility of a new quit cigarette smoking mobile phone application using integrated geo-positioning technology, and motivational messaging within a primary care setting

    Get PDF
    This work was funded in part by an NHS Fife Research and Development Bursary Award to all authors. In addition, we have received funding from the University of St Andrews’ EPSRC Impact Acceleration Account. In 2013, Schick received a LEADERS award from the Scottish Universities Life Sciences Alliance that started this project.Background:  Approximately 11,000 people die in Scotland each year as a result of smoking-related causes. Quitting smoking is relatively easy; maintaining a quit attempt is a very difficult task with success rates for unaided quit attempts stubbornly remaining in the single digits. Pharmaceutical treatment can improve these rates by lowering the overall reward factor of nicotine. However, these and related nicotine replacement therapies do not operate on, or address, the spatial and contextual aspects of smoking behaviour. With the ubiquity of smartphones that can log spatial, quantitative and qualitative data related to smoking behaviour, there exists a person-centred clinical opportunity to support smokers attempting to quit by first understanding their smoking behaviour and subsequently sending them dynamic messages to encourage health behaviour change within a situational context. Methods:  We have built a smartphone app—MapMySmoke—that works on Android and iOS platforms. The deployment of this app within a clinical National Health Service (NHS) setting has two distinct phases: (1) a 2-week logging phase where pre-quit patients log all of their smoking and craving events; and (2) a post-quit phase where users receive dynamic support messages and can continue to log craving events, and should they occur, relapse events. Following the initial logging phase, patients consult with their general practitioner (GP) or healthcare provider to review their smoking patterns and to outline a precise, individualised quit attempt plan. Our feasibility study consists of assessment of an initial app version during and after use by eight patients recruited from an NHS Fife GP practice. In addition to evaluation of the app as a potential smoking cessation aid, we have assessed the user experience, technological requirements and security of the data flow. Results:  In an initial feasibility study, we have deployed the app for a small number of patients within one GP practice in NHS Fife. We recruited eight patients within one surgery, four of whom actively logged information about their smoking behaviour. Initial feedback was very positive, and users indicated a willingness to log their craving and smoking events. In addition, two out of three patients who completed follow-up interviews noted that the app helped them reduce the number of cigarettes they smoked per day, while the third indicated that it had helped them quit. The study highlighted the use of pushed notifications as a potential technology for maintaining quit attempts, and the security of collection of data was audited. These initial results influenced the design of a planned second larger study, comprised of 100 patients, the primary objectives of which are to use statistical modelling to identify times and places of probable switches into smoking states, and to target these times with dynamic health behaviour messaging. Conclusions:  While the health benefits of quitting smoking are unequivocal, such behaviour change is very difficult to achieve. Many factors are likely to contribute to maintaining smoking behaviour, yet the precise role of cues derived from the spatial environment remains unclear. The rise of smartphones, therefore, allows clinicians the opportunity to better understand the spatial aspects of smoking behaviour and affords them the opportunity to push targeted individualised health support messages at vulnerable times and places.Publisher PDFPeer reviewe

    κ−(BEDT−TTF)2X\kappa-(BEDT-TTF)_2X organic crystals: superconducting versus antiferromagnetic instabilities in an anisotropic triangular lattice Hubbard model

    Full text link
    A Hubbard model at half-filling on an anisotropic triangular lattice has been proposed as the minimal model to describe conducting layers of κ−(BEDT−TTF)2X\kappa-(BEDT-TTF)_2X organic materials. The model interpolates between the square lattice and decoupled chains. The κ−(BEDT−TTF)2X\kappa-(BEDT-TTF)_2X materials present many similarities with cuprates, such as the presence of unconventional metallic properties and the close proximity of superconducting and antiferromagnetic phases. As in the cuprates, spin fluctuations are expected to play a crucial role in the onset of superconductivity. We perform a weak-coupling renormalization-group analysis to show that a superconducting instability occurs. Frustration in the antiferromagnetic couplings, which arises from the underlying geometrical arrangement of the lattice, breaks the perfect nesting of the square lattice at half-filling. The spin-wave instability is suppressed and a superconducting instability predominates. For the isotropic triangular lattice, there are again signs of long-range magnetic order, in agreement with studies at strong-coupling.Comment: 4 pages, 5 eps figs, to appear in Can. J. Phys. (proceedings of the Highly Frustrated Magnetism (HFM-2000) conference, Waterloo, Canada, June 2000

    Bosonization and Fermion Liquids in Dimensions Greater Than One

    Full text link
    (Revised, with postscript figures appended, corrections and added comments.) We develop and describe new approaches to the problem of interacting Fermions in spatial dimensions greater than one. These approaches are based on generalizations of powerful tools previously applied to problems in one spatial dimension. We begin with a review of one-dimensional interacting Fermions. We then introduce a simplified model in two spatial dimensions to study the role that spin and perfect nesting play in destabilizing Fermion liquids. The complicated functional renormalization group equations of the full problem are made tractable in our model by replacing the continuum of points that make up the closed Fermi line with four Fermi points. Despite this drastic approximation, the model exhibits physically reasonable behavior both at half-filling (where instabilities occur) and away from half-filling (where a Luttinger liquid arises). Next we implement the Bosonization of higher dimensional Fermi surfaces introduced by Luther and advocated most recently by Haldane. Bosonization incorporates the phase space and small-angle scattering .... (7 figures, appended as a postscript file at the end of the TeX file).Comment: 48 text pages, plain TeX, BUP-JBM-

    Large-N solutions of the Heisenberg and Hubbard-Heisenberg models on the anisotropic triangular lattice: application to Cs2_2CuCl4_4 and to the layered organic superconductors κ\kappa-(BEDT-TTF)2_2X

    Full text link
    We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials κ\kappa-(BEDT-TTF)2_2X. The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2_2CuCl4_4. We find rich phase diagrams for each model. The Sp(N) antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite-N are also discussed. For parameters relevant to Cs2_2CuCl4_4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap. A metal-insulator transition occurs at intermediate values of the interaction strength.Comment: Typos corrected, one reference added. 20 pages, 17 figures, RevTeX 3.

    Criticality in the 2+1-dimensional compact Higgs model and fractionalized insulators

    Full text link
    We use a novel method of computing the third moment M_3 of the action of the 2+1-dimensional compact Higgs model in the adjoint representation with q=2 to extract correlation length and specific heat exponents nu and alpha, without invoking hyperscaling. Finite-size scaling analysis of M_3 yields the ratio (1+alpha)/nu and 1/nu separately. We find that alpha and nu vary along the critical line of the theory, which however exhibits a remarkable resilience of Z_2 criticality. We propose this novel universality class to be that of the quantum phase transition from a Mott-Hubbard insulator to a charge-fractionalized insulator in two spatial dimensions.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Spin-1/2 Heisenberg-Antiferromagnet on the Kagome Lattice: High Temperature Expansion and Exact Diagonalisation Studies

    Full text link
    For the spin-12\frac{1}{2} Heisenberg antiferromagnet on the Kagom\'e lattice we calculate the high temperature series for the specific heat and the structure factor. A comparison of the series with exact diagonalisation studies shows that the specific heat has further structure at lower temperature in addition to a high temperature peak at T≈2/3T\approx 2/3. At T=0.25T=0.25 the structure factor agrees quite well with results for the ground state of a finite cluster with 36 sites. At this temperature the structure factor is less than two times its T=∞T=\infty value and depends only weakly on the wavevector q\bf q, indicating the absence of magnetic order and a correlation length of less than one lattice spacing. The uniform susceptibility has a maximum at T≈1/6T\approx 1/6 and vanishes exponentially for lower temperatures.Comment: 15 pages + 5 figures, revtex, 26.04.9
    • …
    corecore