2,470 research outputs found

    Flatness optimization of micro-injection moulded parts: The case of a PMMA microfluidic component

    Get PDF
    Micro-injection moulding (µ-IM) has attracted a lot of interest because of its potential for the production of low-cost, miniaturized parts in high-volume. Applications of this technology are, amongst others, microfluidic components for lab-on-a-chip devices and micro-optical components. In both cases, the control of the part flatness is a key aspect to maintaining the component's functionality. The objective of this work is to determine the factors affecting the flatness of a polymer part manufactured by µ-IM and to control the manufacturing process with the aim of minimizing the in-process part deformation. As a case study, a PMMA microfluidic substrate with overall dimensions of 10 mm diameter and 1 mm thickness was investigated by designing a µ-IM experiment having flatness as the experimental response. The part flatness was measured using a micro-coordinate measuring machine. Finite elements analysis was also carried out to study the optimal ejection pin configuration. The results of this work show that the control of the µ-IM process conditions can improve the flatness of the polymer part up to about 15 µm. Part flatness as low as 4 µm can be achieved by modifying the design of the ejection system according to suggested guideline

    GPU Accelerated Discrete Element Method (DEM) Molecular Dynamics for Conservative, Faceted Particle Simulations

    Full text link
    Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks-Chandler-Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method is a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles

    Multi-wavelength visibility measurements of the red giant R Doradus

    Get PDF
    We present visibility measurements of the nearby Mira-like star R Doradus taken over a wide range of wavelengths (650--990 nm). The observations were made using MAPPIT (Masked APerture-Plane Interference Telescope), an interferometer operating at the 3.9-m Anglo-Australian Telescope. We used a slit to mask the telescope aperture and prism to disperse the interference pattern in wavelength. We observed in R Dor strong decreases in visibility within the TiO absorption bands. The results are in general agreement with theory but differ in detail, suggesting that further work is needed to refine the theoretical models.Comment: 8 pages; SPIE Conf. 4006 "Interferometry in Optical Astronomy

    Model-based sensitivity analysis for outcome reporting bias in the meta analysis of benefit and harm outcomes

    Get PDF
    Outcome reporting bias occurs when outcomes in research studies are selectively reported, the selection being influenced by the study results. For benefit outcomes, we have shown how risk assessments using the Outcome Reporting Bias in Trials risk classification scale can be used to calculate bias-adjusted treatment effect estimates. This paper presents a new and simpler version of the benefits method, and shows how it can be extended to cover the partial reporting and non-reporting of harm outcomes. Our motivating example is a Cochrane systematic review of 12 studies of Topiramate add-on therapy for drug-resistant partial epilepsy. Bias adjustments for partially reported or unreported outcomes suggest that the review has overestimated the benefits and underestimated the harms of the test treatment

    Developing a health state classification system from NEWQOL for epilepsy using classical psychometric techniques and Rasch analysis: a technical report

    Get PDF
    Aims: Resource allocation amongst competing health care interventions is informed by evidence of both clinical- and cost-effectiveness. Cost-utility analysis is increasingly used to assess cost effectiveness through the use of Quality Adjusted Life Years (QALYs). This requires health state values. Generic measures of health related quality of life (HRQL) are usually used to produce these values, but there are concerns about their relevance and sensitivity in epilepsy. This study develops a health state classification system for epilepsy from the NEWQOL battery, a validated questionnaire measuring QoL in epilepsy. The classification system will be amenable to valuation for calculating QALYs. Methods: Factor and other psychometric analyses were undertaken to investigate the factor structure of the battery, and assess the validity and responsiveness of the items. These analyses were used alongside Rasch analysis to select the dimensions included in the classification system, and the items used to represent each domain. Analysis was carried out on a trial dataset of patients with epilepsy (n=1611). Rasch and factor analysis were performed on one half of the sample and validated on the remaining half. Dimensions and items were selected that performed well across all analyses. Results: The battery was found to demonstrate reliability and validity but responsiveness across time periods for many of the items was low. A six dimension classification system was developed: worry about seizures, depression, memory, cognition, stigmatism and control, each with four response levels. Conclusions: It is feasible to develop a health state classification system from a battery of instruments using a combination of classical psychometric, factor and Rasch analysis. This is the first condition-specific health state classification developed for epilepsy and the next stage will produce preference weights to enable the measure to be used in cost-utility analysis.quality adjusted life years; health related quality of life; Rasch analysis; preference-based measures of health; health states; epilepsy

    Domino Michael-aldol annulations for the stereocontrolled synthesis of bicyclo[3.3.1]nonane and bicyclo[3.2.1]octane derivatives

    Get PDF
    Domino Michael-aldol annulation of cycloalkane-1,3-diones with enals affords a general route to 6-hydroxybicyclo[3.3.1]nonane-2,9-diones and 2-hydroxybicyclo[3.2.1]octane-6,8-diones, notably in one-pot procedures under convenient conditions. The annulation is shown to be compatible with one or more substituents at six positions of the bicyclo[3.3.1]nonane-2,9-dione scaffold. In some cases, the relative configuration of the product can be controlled by the appropriate choice of solvent, base and temperature for the annulation. In contrast to the chair–chair conformations usually adopted, the bicyclo compounds derived from 2,4,4-trimethylcyclohexane-1,3-dione possessed boat-chair conformations. Oxidation of the annulation products gave the corresponding bicyclo triketones
    corecore