940 research outputs found
Geodesics on Lie groups: Euler equations and totally geodesic subgroup
The geodesic motion on a Lie group equipped with a left or right invariant Riemannian
metric is governed by the Euler-Arnold equation. This paper investigates conditions on the
metric in order for a given subgroup to be totally geodesic. Results on the construction
and characterisation of such metrics are given. The setting works both in the classical nite
dimensional case, and in the category of in nite dimensional Fr echet Lie groups, in which
di eomorphism groups are included. Using the framework we give new examples of both nite
and in nite dimensional totally geodesic subgroups. In particular, based on the cross helicity,
we construct right invariant metrics such that a given subgroup of exact volume preserving
di eomorphisms is totally geodesic.
The paper also gives a general framework for the representation of Euler-Arnold equations
in arbitrary choice of dual pairing
Electromagnetic backscattering by plates and disks
With the recent development of diffraction coefficients for imperfectly conducting half-planes, it has become possible to analyze a wide variety of problems for which the impedance surface boundary condition applies. This impedance boundary condition, while approximate, was utilized to extend the usefulness of the Uniform Geometrical Theory of Diffraction (UTD) beyond the perfectly conducting geometries. These half-plane diffraction coefficients are used to analyze patterns of an antenna in the presence of an imperfectly conducting flat polygonal plate. The Geometrical Theory of Diffraction (GTD) techniques were also used to investigate the backscattering from perfectly conducting plates. To further improve the soft polarization results for wide angles, a model for the creeping wave or circulating current on the edge of the disk was obtained and used to find an additional component of the backscattered field. The backscattering from a square plate was then analyzed using GTD. Backscattering in both the principal and off-principal planes was examined
A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks
Among the many possible approaches for the parallelization of self-organizing
networks, and in particular of growing self-organizing networks, perhaps the
most common one is producing an optimized, parallel implementation of the
standard sequential algorithms reported in the literature. In this paper we
explore an alternative approach, based on a new algorithm variant specifically
designed to match the features of the large-scale, fine-grained parallelism of
GPUs, in which multiple input signals are processed at once. Comparative tests
have been performed, using both parallel and sequential implementations of the
new algorithm variant, in particular for a growing self-organizing network that
reconstructs surfaces from point clouds. The experimental results show that
this approach allows harnessing in a more effective way the intrinsic
parallelism that the self-organizing networks algorithms seem intuitively to
suggest, obtaining better performances even with networks of smaller size.Comment: 17 page
A Noninvasive Optical Probe for Detecting Electrical Signals in Silicon IC’s
We report using a 1.3µm(silicon-sub-bandgap) optical probing system to detect electrical signals in silicon integrated circuits. Free carriers within integrated active devices perturb the index of refraction of the material, and we have used a Nomarski interferometer to sense this perturbation. Typical charge-density modulation in active devices produces a substantial index perturbation, and because of this, we have used an InGaAsP semiconductor laser to experimentally observe real-time 0.8V digital signals applied to a bipolar transistor. These signals were detected with a signal-to-noise ratio of 20dB in a system detection bandwidth of over 200MHz.
Since the free-carrier-induced refractive-index perturbation is present in all semiconductor materials, in the future, we expect to be able to detect signals in integrated circuits fabricated in GaAs or any other material, and by taking advantage of the high spatial and temporal resolution of this system, we should be able to observe free-carrier dynamics within most active devices
Plasma arginine vasopressin concentrations in epileptics under monotherapy
Plasma arginine vasopressin concentrations were determined by radio-immunoassay in 112 adult epileptics who were taking carbamazepine, phenytoin, primidone, or sodium valproate in long-term monotherapy, and in 19 controls. No significant difference was found between the groups, but some epileptics taking carbamazepine and primidone showed low values. Serum
concentrations of carbamazepine did not correlate with the concentrations of plasma arginine vasopressin.
In conclusion, there was no evidence of a stimulating
effect of chronic carbamazepine medication or a special inhibiting effect of phenytoin on the release of vasopressin arginine from the posterior pituitary
How to detect novelty in textual data streams? A comparative study of existing methods
Since datasets with annotation for novelty at the document and/or word level
are not easily available, we present a simulation framework that allows us to
create different textual datasets in which we control the way novelty occurs.
We also present a benchmark of existing methods for novelty detection in
textual data streams. We define a few tasks to solve and compare several
state-of-the-art methods. The simulation framework allows us to evaluate their
performances according to a set of limited scenarios and test their sensitivity
to some parameters. Finally, we experiment with the same methods on different
kinds of novelty in the New York Times Annotated Dataset.Comment: 16 page
- …