366 research outputs found
Placental Epigenetics in Children’s Environmental Health
There is a growing interest in understanding the mechanisms that drive the developmental origins of health and disease, and the role of epigenetic regulation has risen to the forefront of these studies. In particular, the placenta may be a model organ to consider as a mediator of the impact of the environment on developmental programming of children\u27s health, as this organ plays a critical role in directing development and regulating the fetal environment. Several recent studies have begun to examine how environmental toxicant exposures can impact the placental epigenome, focusing on studies of DNA methylation and microRNA expression. This review highlights several of these studies and emphasizes the potential the placenta may hold on the broader understanding of the impact of the intrauterine environment on long-term health
Epigenomics in Environmental Health
This review considers the emerging relationships between environmental factors and epigenetic alterations and the application of genome-wide assessments to better define these relationships. First we will briefly cover epigenetic programming in development, one-carbon metabolism, and exposures that may disrupt normal developmental programming of epigenetic states. In addition, because a large portion of epigenetic research has focused on cancer, we discuss exposures associated with carcinogenesis including asbestos, alcohol, radiation, arsenic, and air pollution. Research on other exposures that may affect epigenetic states such as endocrine disruptors is also described, and we also review the evidence for epigenetic alterations associated with aging that may reflect cumulative effects of exposures. From this evidence, we posit potential mechanisms by which exposures modify epigenetic states, noting that understanding the true effect of environmental exposures on the human epigenome will require additional research with appropriate epidemiologic studies and application of novel technologies. With a more comprehensive understanding of the affects of exposures on the epigenome, including consideration of genetic background, the prediction of the toxic potential of new compounds may be more readily achieved, and may lead to the development of more personalized disease prevention and treatment strategies
Maternal Psychiatric Disease and Epigenetic Evidence Suggest a Common Biology for Poor Fetal Growth
We sought to identify and characterize predictors of poor fetal growth among variables extracted from perinatal medical records to gain insight into potential etiologic mechanisms. In this process we reevaluated a previously observed association between poor fetal growth and maternal psychiatric disease. We evaluated 449 deliveries of \u3e36 weeks gestation that occurred between 9/2008 and 9/2010 at the Women and Infants Hospital in Providence Rhode Island. This study group was oversampled for Small-for-Gestational-Age (SGA) infants and excluded Large-for-Gestational-Age (LGA) infants. We assessed the associations between recorded clinical variables and impaired fetal growth: SGA or Intrauterine Growth Restriction (IUGR) diagnosis. After validating the previously observed association between maternal psychiatric disease and impaired fetal growth we addressed weaknesses in the prior studies by explicitly considering antidepressant use and the timing of symptoms with respect to pregnancy. We then evaluated DNA methylation levels at 27 candidate loci in placenta from a subset of these deliveries (n = 197) to examine if epigenetic variation could provide insight into the mechanisms that cause this co-morbidity
miR-16 and miR-21 Expression in the Placenta Is Associated with Fetal Growth
BACKGROUND: Novel research has suggested that altered miRNA expression in the placenta is associated with adverse pregnancy outcomes and with potentially harmful xenobiotic exposures. We hypothesized that aberrant expression of miRNA in the placenta is associated with fetal growth, a measurable phenotype resulting from a number of intrauterine factors, and one which is significantly predictive of later life outcomes. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 107 primary, term, human placentas for expression of 6 miRNA reported to be expressed in the placenta and to regulate cell growth and development pathways: miR-16, miR-21, miR-93, miR-135b, miR-146a, and miR-182. The expression of miR-16 and miR-21 was markedly reduced in infants with the lowest birthweights (p<0.05). Logistic regression models suggested that low expression of miR-16 in the placenta predicts an over 4-fold increased odds of small for gestational age (SGA) status (p = 0.009, 95% CI = 1.42, 12.05). Moreover, having both low miR-16 and low miR-21 expression in the placenta predicts a greater increase in odds for SGA than having just low miR-16 or miR-21 expression (p<0.02), suggesting an additive effect of both of these miRNA. CONCLUSIONS/SIGNIFICANCE: Our study is one of the first to investigate placental miRNA expression profiles associated with birthweight and SGA status. Future research on miRNA whose expression is associated with in utero exposures and markers of fetal growth is essential for better understanding the epigenetic mechanisms underlying the developmental origins of health and disease
Forecasting of commercial sales with large scale Gaussian Processes
This paper argues that there has not been enough discussion in the field of
applications of Gaussian Process for the fast moving consumer goods industry.
Yet, this technique can be important as it e.g., can provide automatic feature
relevance determination and the posterior mean can unlock insights on the data.
Significant challenges are the large size and high dimensionality of commercial
data at a point of sale. The study reviews approaches in the Gaussian Processes
modeling for large data sets, evaluates their performance on commercial sales
and shows value of this type of models as a decision-making tool for
management.Comment: 1o pages, 5 figure
Methylation of the Glucocorticoid Receptor (NR3C1) in Placenta is Associated with Infant Cry Acoustics
Epigenetic mechanisms regulating expression of the glucocorticoid receptor gene (NR3C1) promoter may influence behavioral and biological aspects of stress response in human infants. Acoustic features of infant crying are an indicator of neurobehavioral and neurological status not yet investigated in relation to epigenetic mechanisms. We examined NR3C1 methylation in placental tissue from a series of 120 healthy newborn infants in relation to a detailed set of acoustic features extracted from newborn infant cries. We identified significant associations of NR3C1 methylation with energy variation in infants\u27 cries as well as with the presence of very high fundamental frequency in cry utterances. The presence of high fundamental frequency in cry (above 1 kHz) has been linked to poor vocal tract control, poor regulation of stress response, and may be an indicator or poor neurobehavioral integrity. Thus, these results add to evidence linking epigenetic alteration of the NR3C1 gene in the placenta to neurodevelopmental features in infants
Developmental Genes Targeted for Epigenetic Variation between Twin-Twin Transfusion Syndrome Children
Background: Epigenetic mechanisms are thought to be critical in mediating the role of the intrauterine environment on lifelong health and disease. Twin-twin transfusion syndrome (TTTS) is a rare condition wherein fetuses share the placenta and develop vascular anastomoses, which allow blood to flow between the fetuses. The unequal flow results in reciprocal hypo- and hypervolemia in the affected twins, striking growth differences and physiologic adaptations in response to this significant stressor. The donor twin in the TTTS syndrome can be profoundly growth restricted and there is likely a nutritional imbalance between the twins. The consequences of TTTS on fetal programming are unknown. This condition can now be effectively treated through the use of fetal laparoscopic procedures, but the potential for lifelong morbidity related to this condition during development is apparent. As this condition and the resulting uteroplacental discordance can play a role in the epigenetic process, we sought to investigate the DNA methylation profiles of childhood survivors of TTTS (n = 14). We focused on differences in both global measures and genome-wide CpG specific DNA methylation between donor and recipient children in this pilot study in order to generate hypotheses for further research.
Results: We identified significant hypomethylation of the LINE1 repetitive element in the peripheral blood of donor children and subtle variation in the genome-wide profiles of CpG specific methylation most prominent at CpG sites which are targets for polycomb group repressive complexes.
Conclusions: These preliminary results suggest that coordinated epigenetic alterations result from the intrauterine environment experienced by infants with TTTS and may, at least in part, be responsible for downstream health conditions experienced by individuals surviving this condition
Epigenome-Wide and Transcriptome-Wide Analyses Reveal Gestational Diabetes is Associated with Alterations in the Human Leukocyte Antigen Complex
Background: Gestational diabetes mellitus (GDM) affects approximately 10% of pregnancies in the United States and increases the risk of adverse health outcomes in the offspring. These adult disease propensities may be set by anatomical and molecular alterations in the placenta associated with GDM. Results: To assess the mechanistic aspects of fetal programming, we measured genome-wide methylation (Infinium HumanMethylation450 BeadChips) and expression (Affymetrix transcriptome microarrays) in placental tissue of 41 GDM cases and 41 matched pregnancies without maternal complications from the Harvard Epigenetic Birth Cohort. Specific transcriptional and epigenetic perturbations associated with GDM status included alterations in the major histocompatibility complex (MHC) region, which were validated in an independent cohort, the Rhode Island Child Health Study. Gene ontology enrichment among gene regulation influenced by GDM revealed an over-representation of immune response pathways among differential expression, reflecting these coordinated changes in the MHC region. This differential methylation and expression may be capturing shifts in cellular composition, reflecting physiological changes in the placenta associated with GDM. Conclusions: Our study represents the largest investigation of transcriptomic and methylomic differences associated with GDM, providing comprehensive insight into how GDM shapes the intrauterine environment, which may have implications for fetal (re)programming
- …