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Placental Epigenetics in Children’s Environmental Health

Carmen J. Marsit, PhD1,2

1Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, 
New Hampshire

2Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire

Abstract

There is a growing interest in understanding the mechanisms that drive the developmental origins 

of health and disease, and the role of epigenetic regulation has risen to the forefront of these 

studies. In particular, the placenta may be a model organ to consider as a mediator of the impact of 

the environment on developmental programming of children’s health, as this organ plays a critical 

role in directing development and regulating the fetal environment. Several recent studies have 

begun to examine how environmental toxicant exposures can impact the placental epigenome, 

focusing on studies of DNA methylation and microRNA expression. This review highlights 

several of these studies and emphasizes the potential the placenta may hold on the broader 

understanding of the impact of the intrauterine environment on long-term health.
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The theory of developmental origins of health and disease (DOHaD) posits that the 

environment encountered during gestation impacts fetal development to allow elaboration of 

the single fetal genome to accommodate variation in phenotypes which are responsive or 

adaptive to the predicted external environment. Elegant epidemiologic studies have taken 

advantage of natural experiments, including the Dutch Famine of World War II and the 

Quebec ice storm of 1998 to demonstrate the impact of extreme environmental conditions on 

infant, childhood, and long-term health outcomes.1–8 Birth weight, as a marker of the quality 

of the intrauterine environment, has also been linked to adult diseases and disorders 

including metabolic syndrome, cardiovascular disease, obesity, diabetes, and mental health 

conditions.9–13

Building on this research, contemporary studies are aiming to elucidate how specific 

environmental factors, including maternal nutrition, psychosocial profile, drugs, xenobiotics 

and environmental contaminants, maternal metabolic status, and infection, can impact early 

childhood and long-term health. Importantly, these studies are also beginning to enumerate 

mechanisms underlying these effects in the hopes that interventional efforts may become 
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apparent. This review will focus on such studies, specifically those focusing on 

environmental contaminants and the utility of the placenta and epigenetic biomarkers in the 

placenta to contribute to the understanding of the mechanisms underlying gestational 

environmental contribution to long-term health.

The Placenta’s Role in DOHaD

Central to understanding the mechanisms underlying DOHaD is the placenta. David Barker, 

who delineated the “Thrifty Phenotype” giving rise to the current concept of DOHaD, 

devoted much of his work to linking gross placental characteristics such as placental size to 

adult metabolic outcomes as well as understanding the predictors of those placental 

measures.14–18 Such work continues, and new visual morphometric tools are being used to 

demonstrate how morphologic and pathologic variation of the placenta can influence 

childhood growth and potentially other outcomes.19–21 Understanding molecular features of 

cells responsible for placental function, though, holds additional promise in providing 

fundamental insights into the effects of environmental contaminants and their effects.

The critical roles of the placenta in fetal development make it an excellent organ of focus to 

consider as a mediator of the environment on fetal, infant, and potentially lifelong health. 

The placenta sits at the interface of the maternal and fetal environment, controlling fetal 

development and environment through a variety of critical functions (Table 1). It is the first 

complex organ to form during development, and can be impacted at the earliest stages by 

maternal environmental factors leading to adaptations which can both positively and 

negatively impact the course of gestation. Environmental toxicants can significantly impact 

fetal development by impairing or altering the placenta’s ability to perform these 

functions.22,23

Appropriate placental gene expression is paramount to fetal regulation during pregnancy, 

and alterations from this have been linked to preeclampsia, intrauterine growth restriction, 

gestational diabetes mellitus, and trophoblastic disease.25–29 While characterizing gene 

expression patterns can aid in pinpointing critical pathways involved in disease 

pathogenesis, an additional layer of examination, considering how these expression patters 

become impacted is necessary to fully describe toxicant effects on the placenta and thus 

impacting health.

Epigenetic Mechanisms and the Placenta

Epigenetic mechanisms are those which control gene expression or gene expression 

potential in a mitotically stable fashion without altering the underlying sequence of the 

DNA. Fundamentally, epigenetic mechanisms regulate the conformation and accessibility of 

chromatin to transcription factors and the transcriptional machinery’s ability to generate 

RNA from the DNA sequence.

Histones, the proteins which constitute the nucleosome core, represent the most active sites 

of epigenetic regulation, as tails of these proteins which are accessible from the nucleosome 

core can be posttranslationally modified with a variety of moieties leading both to changes 

in the physical accessibility of the DNA they encase, and also to signaling to transcriptional 
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activators and repressors to control transcription. The histone modification landscape, 

although highly relevant in controlling gene expression patterns in the placenta and all other 

tissues, has been less well characterized, particularly in human studies, as the methodologies 

required for its characterization are thus far not amenable to large-scale population studies. 

Chromatin immunoprecipitation techniques required for colocalizing modified histones with 

their coincident DNA rely on antibodies which can have challenges in their reproducibility, 

as well as access to pristine, freshly collected, and fairly large quantities of samples, which 

may not be feasible in epidemiologic contexts.

On the other hand, modification of the DNA itself, in the form of cytosine methylation, has 

been well characterized in human studies. DNA methylation often occurs coincidentally 

with repressive histone modifications, and in the context of CpG methylation within 

promoter or proximal promoter region, CpG-rich (CpG island) areas can signal gene 

silencing. DNA methylation can be interrogated using sodium bisulfite modification of 

genomic DNA.30 This technique leads to the deamination of all unmethylated cytosines in 

the genome to uracil, while methylated cytosines are retained. Following amplification, the 

methylation status can be determined by methylation-specific PCR or sequencing strategies, 

including short-read quantitative pyrosequencing or mass spectrometry–based techniques as 

well as next-generation sequencing technologies, simply by denoting the presence or 

absence of cytosine in the sequence. It is worthy to note that when performed quantitatively, 

the percent methylation being reported at any site is really a reflection of the number of 

methylated alleles within a given sample, and is more reflective of the number of cells 

demonstrating a methylated state, as any one allele can be only methylated or not.

There is a growing literature of studies examining the DNA methylation status of specific 

candidate genes, as well as markers of global DNA methylation, and variation in genome-

wide DNA methylation in the placenta.31 Owing to the importance of the placenta in 

development, links have been made between variation in placental DNA methylation and 

newborn outcomes including growth and birth weight, gestational age, and behavior.32–36 In 

addition, various pregnancy conditions and complications, including preeclampsia, 

gestational diabetes, and maternal obesity, have been linked to placental DNA methylation 

profiles.37–44

An additional level of epigenetic control, at the posttranscriptional level, is directed by 

noncoding RNA, and specifically microRNA (miRNA). MiRNAs are small, approximately 

22 nucleotides, noncoding RNA molecules, which are highly ubiquitous and possess 

conservation across many species.45 MiRNAs posttranscriptionally regulate gene expression 

by base-pairing to the 3′-untranslated region of a target mRNA resulting in either 

translational repression or direct degradation of the mRNA, the exact mechanism of which 

depends largely on the degree of complementarity of the miRNA to its mRNA target. 

Because partial complementarity of a miRNA to an mRNA target can still lead to 

translational repression, a single miRNA has the capability of regulating a large number of 

genes.46 MiRNAs have been implicated in regulating numerous cellular processes and play 

a critical role in mammalian development.47,48 Highly conserved clusters of primate-

specific miRNA are expressed in the placenta and other tissues49,50 and interestingly, 

similar patterns of regulation of these conserved miRNA have been described in placenta 
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and brain.50 Altered miRNA expression has been linked to several maternal–placental 

conditions such as preeclampsia51– 55 and growth restriction,56 reinforcing the role for 

placental miRNA as clinical biomarkers of exposure or disease.57 In fact, the C19MC 

miRNA cluster plays critical role in placental trophoblast migration, maternal immune 

system regulation, possibly through their secretion as exosomes acting as intercellular 

signals.49,58–61

As it is clear that maternal factors can contribute to the epigenomic landscape of the 

placenta, and that this level of epigenetic regulation can impact placental function and 

children’s health, there is a growing interest from the environmental epidemiology 

community to consider placental epigenetics as a mediator of the maternal toxicant 

environment on children’s health outcomes. This more complete understanding of the 

central role of the placenta and its molecular landscape holds the hope of providing risk 

predictors and biomarkers to help clinicians better diagnose and treat complex disease and to 

provide insights to the pathologic process. In the following sections, we highlight recent 

work considering the impacts of selected environmental toxicants on placental epigenetic 

profiles and how these link to important newborn and early life outcomes.

Environmental Exposures and DNA Methylation

Endocrine disrupting chemicals (EDCs) are generally considered to be a wide-ranging group 

of compounds that, at certain doses, act to alter the function of hormones within mammals.62 

Common chemicals with broad use and so nearly universal exposure that fall within this 

category include phenols such as bisphenol A (BPA), or phthalates, which are important 

plasticizers used often in food packaging. In most cases, the toxic activity of EDCs is not 

entirely through their hormonal effects, and there remain significant questions regarding 

how they impact wide-raging human health conditions particularly during the prenatal 

period.63 Experimentally in a murine model, BPA has been shown to affect the epigenome 

through alteration of the DNA methylation status of the metastable Agouti allele in mice, a 

phenomenon which can be reversed by nutritional supplementation with methyl donors 

(folic acid).64 Importantly, animal models have demonstrated that the liver’s ability to 

metabolize BPA into its inactivated state is reduced by 40% during pregnancy,65 suggesting 

an acute susceptibility to endocrine disruptors during this period for both the mother and 

fetus. Human studies mimic these findings, demonstrating that pregnant women excreted 

26% greater levels of BPA in their urine as compared with pre-pregnancy.66

Recent work has begun to examine the potential epigenetic effects of EDCs in human 

populations. Nahar et al demonstrated that in utero exposure to BPA altered expression of 

xenobiotic metabolizing enzymes (XMEs) in human fetal liver tissue through site-specific 

methylation of the Catechol-O-methyltransferase (COMT) genes and average methylation 

differences of the sulfotransferase family, cytosolic, 2A, dehydroepiandrosterone (DHEA)-

preferring, member 1 (SULT2A1) gene by BPA exposure level.67 Increasing maternal levels 

of the sum of phthalate metabolites assessed in maternal urine were negatively correlated 

with placental methylation of the imprinted genes H19 and insulin-like growth factor 2 

(IGF2).68 H19 and IGF2 form a gene cluster on human chromosome 11, and have been 

shown to be heavily regulated by epigenetic mechanisms (common among imprinted genes) 
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with IGF2 acting as an important fetal growth factor.69 Together, these preliminary findings 

suggest that EDC exposure has the potential to impact fetal and child health through 

variation in placental methylation, though a more thorough investigation is required.

Many metals and metalloids found in the environment, including cadmium, and mercury 

pose potential health hazards, and are becoming increasingly studied for their effects during 

gestation. In many cases, the toxic mechanisms of these exposures are unclear and 

epigenetic effects have become increasingly investigated as the potential pathways through 

which these exposures impact human health.

Cadmium exposure primarily occurs through cigarette smoke and dietary intake, with high 

levels found in offal meats, crustaceans, mollusks, and some leafy greens.70,71 Cadmium is a 

transplacental toxic metal, accumulating in and passing through the placenta to the fetal 

circulation, and has been implicated as a potential cause of adverse birth outcomes, 

including birth weight and head circumference, although this effect may be sex specific.72

The epigenetic influence of this metal is now a topic of study, including work in a rat model, 

where prenatal exposure to cadmium altered methylation of the hepatic glucocorticoid 

receptor.73 This parallels human in vitro data demonstrating an altered glucocorticoid 

response in human placental trophoblasts following cadmium exposure.74 In cord blood 

DNA, cadmium exposure could be associated with variable DNA methylation which also 

demonstrated sex specificity. Correlations between exposure levels and methylation in boys 

were predominantly positive (96% of the top 500 CpG sites), while in girls only 29% of the 

top 500 correlated CpG sites showed a positive relationship. In addition, the genes showing 

strong correlations to cadmium levels differed between the sexes, as girls were 

predominantly affected in genes related to organ development, while changes in boys were 

in cell-death–related genes. Though the authors had previously described an inverse 

relationship between cadmium and birth weight in girls, this study was unable to identify 

specific CpG sites affecting birth weight.75

Mechanisms of mercury toxicity also remain enigmatic, although mercury exposure in early 

life is associated with adverse neurodevelopmental outcomes,76,77 including reduced 

newborn cerebellum size,78 adverse behavioral outcomes,79 central nervous system 

damage,80 poor psychomotor development,81 and cognitive developmental delays.82 Other 

effects which may not appear until later life, such as increased type II diabetes susceptibility, 

have also been reported.83,84

Mercury crosses the placenta85,86 and interferes with placental functioning.87 Twice the 

concentration of methylmercury, the predominant form of mercury exposure, has been found 

in placenta compared with maternal blood.88 A common source of mercury exposure is 

maternal fish consumption,89 although maternal dental amalgams with inorganic 

mercury89,90 can also increase placental mercury. A single maternal amalgam restoration 

has been associated with a three- to sixfold increase in placental mercury.90 There has been 

limited examination of mercury exposure associated with molecular features of the 

developing placenta, although a recent epigenome-wide study identified hypomethylation of 

the EMID2 gene associated with infant mercury exposure in utero and linked the altered 
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methylation status of this gene to an adverse neurobehavioral profile characterized by 

significantly higher arousal, excitability, signs of stress or abstinence, and hypertonic motor 

tone, with poorer self-regulation and quality of movement compared with non–high-risk 

infants.91 Although requiring replication and expansion, these preliminary studies suggest a 

potential epigenetic mode of mercury’s toxic activity which can be considered.

Placental miRNA Expression and Environmental Exposures

Initial studies in lymphoblastoid cell lines demonstrated the potential responsiveness of 

miRNA expression to cellular stressors, including folate deficiency and arsenic exposure.92 

In vitro studies using placental trophoblast models identified miR-146a to be induced with 

exposure to BPA, and that the overexpression of this miRNA in trophoblasts led to 

decreases in cellular proliferation and increased sensitivity to DNA damaging agents, 

denoting an important potential mechanism for coexposure synergism.93 Other studies have 

also demonstrated associations between miRNA expression in human cells and exposure to 

trace metals (reviewed in Baccarelli and Bollati94), including Cd,95 As, and Pb,96 and metal-

rich particulates.97 Although a relatively new area in environmental health research, studies 

focusing on miRNA hold significant potential to improve our understanding of the health 

effects of various environmental contaminants including the wide-ranging and long-term 

effects of these exposures.

Conclusion and Future Directions

There is growing interest in studies of the placenta as a mediator of the intrauterine 

environment, and highlighted here was only a sampling of the work considering the effects 

of environmental toxicants on the placental epigenome. This complements the work 

considering the impact of maternal nutrition and health, psychosocial factors, genetics, and 

drugs including pharmaceuticals, as well as the burgeoning work considering the paternal 

contribution to children’s long-term health. Yet, it highlights the urgent need for cross-

disciplinary studies that can more appropriately integrate all of these environmental factors, 

as none occur in a vacuum, and all, likely, in some way contribute to long-term 

developmental programming. The placenta and its molecular characteristics can thus 

potentially serve as an integrated assessment of the complicated interplay of all of these 

factors, and in so doing not only provided a biomarker of exposure but one of effect to better 

characterize the mechanisms driving DOHaD. For the long-term implications of the 

placental epigenome to be fully realized, long-term longitudinal studies linking the placental 

epigenetic landscape to children’s outcomes will be needed. As more studies begin to 

incorporate placental collections and assessments, there will be growing opportunities to 

combine resources and develop highly integrated studies to tackle some of the most 

complicated effects of the intrauterine environment, as well as to inform potential avenues 

of intervention and prevention.
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Table 1

Key functions of the placenta24

Transport

  • Nutrients, water, waste, gases

Metabolism

  • Glucose, amino acids, lipids

Protection

  •Export pumps, xenobiotic metabolism, glucocorticoid regulation, physical barrier, immune regulation

Endocrine

  • Estrogens, growth factors, cytokines, chemokines, angiogenic factors, pregnancy hormones, neuropeptides
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