27,073 research outputs found

    Evaluation of the electrochemical O2 concentrator as an O2 compressor

    Get PDF
    A program was successfully completed to analytically and experimentally evaluate the feasibility of using an electrochemical oxygen (O2) concentrator as an O2 compressor. The electrochemical O2 compressor (EOC) compresses 345 kN/sq m (50 psia) O2 generated on board the space vehicle by the water electrolysis subsystem (WES) in a single stage to 20,700 kN/sq m (3000 psia) to refill spent extravehicular equipment O2 bottles and to eliminate the need for high pressure O2 storage. The single cell EOC designed, fabricated, and used for the feasibility testing is capable of being tested at O2 pressures up to 41,400 kN/sq m (6000 psia). A ground support test facility to test the EOC cell was designed, fabricated, and used for the EOC feasibility testing. A product assurance program was established, implemented, and maintained which emphasized safety and materials compatibility associated with high pressure O2 operation. A membrane development program was conducted to develop a membrane for EOC application. Data obtained using a commercially available membrane were used to guide the development of the membranes fabricated specifically for an EOC. A total of 15 membranes were fabricated

    Thermal and structural modeling of superinsulation

    Get PDF
    Model permits direct physical measurement of the thermal response of critical components of space telescopes, thus providing flexibility for systems studies and design changes

    Gratings photowritten in ion-exchanged glass channel waveguides

    Get PDF
    Gratings are photowritten in ion-exchanged glass channel waveguides. The transmission of these waveguides shows a rejection dip of almost 20dB. The polarisation dependence of these waveguide gratings is measured and discussed

    Electrochemical carbon dioxide concentrator: Math model

    Get PDF
    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range

    Grating formation in BGG31 glass by UV exposure

    Get PDF
    A three-dimensional index variation grating in bulk BGG31 glass written using neither hydrogen loading nor germanium doping is demonstrated. This material is useful for fabricating ion-exchanged waveguides, and its photosensitivity to ultraviolet (UV) radiation at 248nm has not been previously explored. Intensity measurements of the Bragg diffracted spots indicated a maximum index variation (Delta n) of similar to 4 x 10(-5)

    Electrochemical carbon dioxide concentrator subsystem math model

    Get PDF
    A steady state computer simulation model has been developed to describe the performance of a total six man, self-contained electrochemical carbon dioxide concentrator subsystem built for the space station prototype. The math model combines expressions describing the performance of the electrochemical depolarized carbon dioxide concentrator cells and modules previously developed with expressions describing the performance of the other major CS-6 components. The model is capable of accurately predicting CS-6 performance over EDC operating ranges and the computer simulation results agree with experimental data obtained over the prediction range

    Spacecraft nitrogen generation

    Get PDF
    Two spacecraft nitrogen (N2) generation systems based on the catalytic dissociation of hydrazine (N2H4) were evaluated. In the first system, liquid N2H4 is catalytically dissociated to yield an N2 and hydrogen (H2) gas mixture. Separation of the N2/H2 gas mixture to yield N2 and a supply of H2 is accomplished using a polymer-electrochemical N2/H2 separator. In the second system, the N2/H2 gas mixture is separated in a two-stage palladium/silver (Pd/Ag) N2/H2 separator. The program culminated in the successful design, fabrication, and testing of a N2H4 catalytic dissociator, a polymer-electrochemical N2/H2 separator, and a two-stage Pd/Ag N2/H2 separator. The hardware developed was sized for an N2 delivery rate of 6.81 kg/d (15lb/day). Experimental results demonstrated that both spacecraft N2 generation systems are capable of producing 6.81 kg/d (15lb/day) of 99.9% pure N2 at a pressure greater than or equal to 1035 kN/m(2) (150 psia)

    A perturbation density functional theory for the competition between inter and intramolecular association

    Get PDF
    Using the framework of Wertheim's thermodynamic perturbation theory we develop the first density functional theory which accounts for intramolecular association in chain molecules. To test the theory new Monte Carlo simulations are performed at a fluid solid interface for a 4 segment chain which can both intra and intermolecularly associate. The theory and simulation results are found to be in excellent agreement. It is shown that the inclusion of intramolecular association can have profound effects on interfacial properties such as interfacial tension and the partition coefficient

    A Census of X-ray gas in NGC 1068: Results from 450ks of Chandra HETG Observation

    Full text link
    We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating (HETG) on the Chandra X-ray observatory. The data show line and radiative recombination continuum (RRC) emission from a broad range of ions and elements. The models explore the importance of excitation processes for these lines including photoionization followed by recombination, radiative excitation by absorption of continuum radiation and inner shell fluorescence. The models show that the relative importance of these processes depends on the conditions in the emitting gas, and that no single emitting component can fit the entire spectrum. In particular, the relative importance of radiative excitation and photoionization/recombination differs according to the element and ion stage emitting the line. This in turn implies a diversity of values for the ionization parameter of the various components of gas responsible for the emission, ranging from log(xi)=1 -- 3. Using this, we obtain an estimate for the total amount of gas responsible for the observed emission. The mass flux through the region included in the HETG extraction region is approximately 0.3 Msun/yr assuming ordered flow at the speed characterizing the line widths. This can be compared with what is known about this object from other techniques.Comment: 39 pages, 12 figures, Ap. J. in pres
    • …
    corecore