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A perturbation density functional theory for the competition between inter
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Using the framework of Wertheim’s thermodynamic perturbation theory we develop the first
density functional theory which accounts for intramolecular association in chain molecules. To test
the theory new Monte Carlo simulations are performed at a fluid solid interface for a 4 segment
chain which can both intra and intermolecularly associate. The theory and simulation results are
found to be in excellent agreement. It is shown that the inclusion of intramolecular association can
have profound effects on interfacial properties such as interfacial tension and the partition coefficient.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703015]

I. INTRODUCTION

Hydrogen bonding (association) plays an integral role in
our everyday lives.1 From the remarkable properties of wa-
ter to the folding of proteins2 hydrogen bonding is key to our
very existence. Modeling associating fluids is complicated by
highly directional asymmetric interactions; for this reason the
development of accurate statistical mechanical based theories
for associating fluids lagged behind that of simple fluids with
spherically symmetric potentials. In the 1980s Wertheim3–7

developed a theory capable of accurately describing asso-
ciating fluids by introducing the highly directional interac-
tions at an early point in the theory. By introducing a multi-
density formalism, where each bonding state of a molecule
is treated as a distinct species, Wertheim was able to rewrite
the statistical mechanics of associating fluids in a form which
was very amiable to approximation. One such approximation,
Wertheim’s thermodynamic perturbation theory (TPT),4, 6, 7

has proven remarkably successful. In TPT the change in free
energy due to association is obtained as a perturbation to a
hard sphere reference fluid. TPT is typically used as a first
order perturbation theory (TPT1) and provides a basis for the
statistical associating fluid theory (SAFT) (Refs. 8 and 9)
equation of state; SAFT has found widespread use in both
industry and academia.10

One key approximation introduced in TPT is the neglect
of all graphs with rings of association bonds. For most sys-
tems this approximation will introduce a small or nonexistent
error, however, molecules such as glycol ethers11 show a sig-
nificant degree of intramolecular association which affects the
thermodynamics of the system. To account for the possibil-
ity of intramolecular association Sear and Jackson12 modified
TPT by adding a ring graph to the fundamental graph sum. In
a separate approach Ghonasgi and Chapman13, 14 developed a
theory to account for intramolecular association; their theory

a)Author to whom correspondence should be addressed. Electronic mail:
wgchap@rice.edu. Tel.: (1) 713 348 4900. Fax: (1) 713 348 5478.

was found to be in excellent agreement with molecular simu-
lations.

In addition to homogeneous systems, TPT has proven
versatile and accurate in the description of inhomogeneous
systems.15 By letting the association energy become infinitely
large, complex polyatomic molecules can be constructed al-
lowing the development of polymer density functional the-
ories (DFTs),16–21 in the framework of TPT. In addition, if
some association energies are allowed to remain finite, DFTs
capable of describing associating polyatomic molecules can
be developed.22–24 In these associating DFTs the possibility
of intramolecular association has been neglected. If we are to
develop an accurate DFT for the description of interfacial sys-
tems involving glycol ethers, or to accurately describe protein
folding,2 the possibility of intramolecular association must be
accounted for.

In this work, we will develop a DFT capable of describ-
ing molecules which can both intra and intermolecularly as-
sociate. We will follow Sear and Jackson12 and introduce a
ring graph in the fundamental graph sum to account for in-
tramolecular association. With this free energy functional, we
will construct and minimize a grand potential which will al-
low us to obtain the inhomogeneous density profiles. As a test
of the theory, we perform new Monte Carlo (MC) simulations
for a 4-mer chain which can both intra and intermolecularly
associate near a hard wall. The theory is shown to be in ex-
cellent agreement with simulation. We show that interfacial
properties such as interfacial tension and the partition coeffi-
cient are strongly affected by intramolecular association.

II. THEORY

In this section, we will introduce the type of molecules
we want to study, the potential model and develop the
Helmholtz free energy and segment densities. Here we will
consider linear fully flexible molecules of length m consisting
of hard spheres (segments) where each location on the chain
is occupied by a certain species of segment. Each segment has
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FIG. 1. Formation of associating chain molecules of length m from spherical
building blocks.

two association sites A (red) and B (green) as shown in Fig. 1.
The interaction potential between segments β and γ is given
as the sum of a hard sphere and association potential

φ(β,γ )(12) = φ
(β,γ )
HS (r12) + φ

(β,γ )
AB (12). (1)

The notation (1) represents the position �r1 and orientation �1

of a spherical segment, r12 is the distance between the seg-
ments, and φ

(β,γ )
HS (r12) is the hard sphere potential

φ
(β,γ )
HS (r12) =

{
0 r12 ≥ σ (β,γ )

∞ r12 < σ (β,γ ) , (2)

where σ (β, γ ) is the cross species diameter. The association
potential φ

(β,γ )
AB (12) is that of a conical site9

φ
(i,j )
AB (i, j ) =

{
−ε

(ij )
AB , rij < rc; θAi < θc; θBj < θc

0 otherwise
, (3)

where θAi is the angle between the vector from the center of
segment i to site A and the vector �rij , θ c is the cutoff angle be-
yond which association is not allowed, and rc is the cutoff ra-
dius which is the maximum separation between two segments
where association can occur. There is no association between
sites of the same type, that is, ε

(ij )
AA = ε

(ij )
BB = 0. To create the

chain, the limit of complete association is taken, ε
(ij )
AB → ∞,

for all association bonds internal to the chain while leaving
the association energy between the A association site on seg-
ment 1 and the B association site on segment m finite and
adjustable. As illustrated in Fig. 2, both intermolecular and
intramolecular association is allowed.

In Wertheim’s theory each bonding state of a molecule is
treated as a distinct species. The density of species β bonded
at a set of sites α at location 1 in the fluid is ρ(β)

α (1). For the
two site fluid the total density of component β will be the sum
of the segments which are bonded at both sites A and B, those
bonded at sites A or B and those which are not bonded

ρ(β) (1) = ρ
(β)
AB (1) + ρ

(β)
A (1) + ρ

(β)
B (1) + ρ(β)

o (1) , (4)

where ρ
(β)
o (1) is the monomer density. We will also use a set

of density parameters

σ
(β)
A (1) = ρ

(β)
A (1) + ρ

(β)
o (1)

σ
(β)
B (1) = ρ

(β)
B (1) + ρ

(β)
o (1)

. (5)

In TPT the change in free energy due to association is

βAWertheim =
m∑

β=1

∫ (
ρ(β)(1) ln

ρ
(β)
o (1)

ρ(β)(1)

+ ρ(β)(1) + Q(β)(1)

)
d(1) − �c(o). (6)

FIG. 2. Intermolecular and intramolecular association of associating chain
molecules.

Equation (6) is written for molecules with fixed bond angles
between association sites. To allow for distributions of bond
angles, bond angles α are treated as internal variables and
bond angle distribution functions ξ (α) can be introduced.7 In
the fully flexible limit non-adjacent segments on the chain can
overlap and ξ (α) = 1/2 at which point Eq. (6) is recovered. In-
troducing the bond angle correlation functions will not change
the form of the results, so for notational simplicity we will not
use this formality. The form of the final equations is valid for
fully and semi-flexible chains, one simply needs to enforce
any bond angle constraints.

For a two site fluid Q(β)(1) is given as

Q(β)(1) = −σ
(β)
A (1) − σ

(β)
B (1) + σ

(β)
A (1)σ (β)

B (1)

ρ
(β)
o (1)

. (7)

The fundamental graph sum �c(o) for this type of molecule
can be written as the sum of contributions from chain forma-
tion, ring formation, and intermolecular association (polymer-
ization)

�c(o) = �c
(o)
chain + �c

(o)
ring + �c

(o)
poly, (8)

where �c
(o)
chain and �c

(o)
poly are given by7

�c
(o)
chain =

m−1∑
β=1

∫
σ

(β)
A (1)�(β,β+1)(12)σ (β+1)

B (2)d(1)d(2),

(9)

�c
(o)
poly =

∫
σ

(1)
B (1)�poly(12)σ (m)

A (2)d(1)d(2). (10)

The term �(i, j)(12) = y(i, j)(12)F(i, j)(12) where y(i, j)(12) is
the inhomogeneous cavity correlation function of the ref-
erence system and F (i,j )(12) = exp(−βφ

(i,j )
HS (r12))f (i,j )

AB (12).
The contribution due to intramolecular association is given
by Sear and Jackson’s ring graph12

�c
(o)
ring =

∫
�̃Ring(1 . . . m)

m∏
∈=1

ρ(∈)
o (∈)d(∈), (11)

where

�̃Ring(1 . . . m) = �̃Chain(1 . . . m)�ring(1,m) (12)

and

�̃Chain(1 . . . m) = �(12)(12)�(23)(23) . . . �(m−1,m)(m − 1,m).

(13)
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We minimize the free energy with respect to monomer densi-
ties ρ

(j )
o (j ) to obtain

ρ(j )(j )

ρ
(j )
o (j )

= σ
(j )
A (j )σ (j )

B (j )(
ρ

(j )
o (j )

)2 +
∫

�̃Ring(1 . . . m)
m∏

∈�=j

ρ(∈)
o (∈)d(∈).

(14)
Now minimizing with respect to the σ

(j )
A (j ) and σ

(j )
B (j ) for

chain forming association sites

σ
(j )
B (j )

ρ
(j )
o (j )

− 1 =
∫

�(j,j+1)(j, j + 1)σ (j+1)
B (j + 1)d(j + 1),

(15)

σ
(j )
A (j )

ρ
(j )
o (j )

− 1 =
∫

σ
(j−1)
A (j − 1)�(j−1,j )(j − 1, j )d(j − 1).

(16)
For site A on segment 1 and site B on segment m

σ
(1)
A (1)

ρ
(1)
o (1)

− 1 =
∫

σ
(m)
A (2)�poly(12)d(2), (17)

σ
(m)
B (1)

ρ
(m)
o (1)

− 1 =
∫

σ
(1)
B (1)�poly(12)d(2). (18)

Using Eqs. (6)–(18) the Helmholtz free energy can be written
as

βAWertheim

=
m∑

β=1

∫ (
ρ(β)(1) ln

ρ
(β)
o (1)

ρ(β)(1)
+ ρ(β)(1) − σ

(β)
B (1)

)
d(1)

−
∫ (

ρ(1)(1) − σ
(1)
A (1)σ (1)

B (1)

ρ
(1)
o (1)

)
d(1). (19)

Equation (19) was originally derived by Sear and Jackson12

in the development of a bulk equation of state, however
Eq. (19) is general for inhomogeneous systems. Writing
Eq. (14) for segment 1

ρ(1)(1)

ρ
(1)
o (1)

= σ
(1)
A (1)σ (1)

B (1)(
ρ

(1)
o (1)

)2 + I
(1)
ring(1), (20)

where

I
(j )
ring(j ) =

∫
�̃Ring(1 . . . m)

m∏
∈�=j

ρ(∈)
o (∈)d(∈). (21)

Combining Eqs. (17) and (20)

σ
(1)
B (1) = ρ(1)(1) − ρ(1)

o (1)I (1)
ring(1)

1 + ∫
σ

(m)
A (2)�poly(12)d(2)

. (22)

Dividing each side of Eq. (22) by ρ(1)(1) we obtain

XA(1) = X
poly

A (1)(1 − χring(1)), (23)

where XA(1) is the fraction of component 1 not bonded at
site A, XA(1) = σ

(1)
B (1)/ρ(1)(1), similarly for site B on seg-

ment m XB(1) = σ
(m)
A (1)/ρ(m)(1). The ring fraction χ ring(1)

is the fraction of species 1 which is bonded intramolecularly
to species m

χring(1) = ρ(1)
o (1)

ρ(1)(1)
I

(1)
ring(1), (24)

and X
poly

A (1) is the fraction of component 1 not bonded at site
A if only intermolecular association were possible

X
poly

A (1) = 1

1 + ∫
ρ(m)(2)XB(2)�poly(12)d(2)

, (25)

and the equivalent fraction for site B on segment m

X
poly

B (1) = 1

1 + ∫
ρ(1)(2)XA(2)�poly(12)d(2)

. (26)

Now we wish to take the limit of complete association of all
chain forming sites. In the limit of complete association of
chain forming sites monomer densities become small, so the
second term on the left-hand sides of Eqs. (15) and (16) can be
neglected. Equations (15) and (16) are now used to recursively
eliminate the density parameters σ

(i)
A and σ

(i)
B associated with

chain forming sites in Eq. (14). The resulting segmental den-
sities are

ρ(j )(j )

ρ
(j )
o (j )

=
∫

1

X
poly

A (1)
�̃chain(1 . . . m)

1

X
poly

B (m)

m∏
∈�=j

ρ(∈)
o (∈)d(∈)

+
∫

�̃Ring(1 . . . m)
m∏

∈�=j

ρ(∈)
o (∈)d(∈). (27)

We will find it necessary to employ a two point chain density
ρ(j, k)(j, k); to obtain this quantity we first note that the densi-
ties in Eq. (27) can be obtained through functional derivatives
of a generating functional �c̃(o)

ρ(j )(j )

ρ
(j )
o (j )

= δ�c̃(o)

δρ
(j )
o (j )

. (28)

The functional �c̃(o) is given by

�c̃(o) =
∫

1

X
poly

A (1)
�̃chain(1 . . . m)

1

X
poly

B (m)

m∏
∈=1

ρ(∈)
o (∈)d(∈)

+
∫

�̃Ring(1 . . . m)
m∏

∈=1

ρ(∈)
o (∈)d(∈). (29)

Using the generating functional �c̃(o) we can also obtain the
two point chain density as

ρ(j,k)(j, k)

ρ
(j )
o (j )ρ(k)

o (k)
= δ2�c̃(o)

δρ
(k)
o (k)δρ(j )

o (j )
. (30)

Evaluating Eq. (30)

ρ(j,k)(j, k)

ρ
(j )
o (j )ρ(k)

o (k)

=
∫

1

X
poly

A (1)
�̃chain(1 . . . m)

1

X
poly

B (m)

m∏
∈�=j
∈�=k

ρ(∈)
o (∈)d(∈)

+
∫

�̃Ring(1 . . . m)
m∏

∈�=j
∈�=k

ρ(∈)
o (∈)d(∈). (31)



154103-4 Marshall, García-Cuéllar, and Chapman J. Chem. Phys. 136, 154103 (2012)

Comparing Eqs. (27) and (31) it is clear that

ρ(j )(j ) =
∫

ρ(j,k)(j, k)d(k). (32)

To complete the theory we must obtain equations for the m
unknown ρ

(j )
o (j )’s. To determine these densities, density func-

tional theory will be employed. In density functional theory,
we define a grand potential at fixed chemical potential μ, vol-
ume V, and temperature T subject to an external field V

(β)
ext (�r ′)

�[{ρ(β)(�r)}] = A[{ρ(β)(�r)}]

−
m∑

β=1

∫
d�r ′ρ(β)(�r ′)

(
μ(β) − V

(β)
ext (�r ′)

)
, (33)

where

ρ(γ ) (�r1) =
∫

ρ(γ ) (1)d�1 (34)

is the density integrated over all orientations; there is a similar
relation for ρ

(γ )
o (�r1).

Minimization of the grand potential with respect to the
segment densities yields the set of Euler–Lagrange equations.

δA[{ρ(β)(�r)}]
δρ(γ )(�r)

= μ(γ ) − V
(γ )
ext ∀ γ = 1,m. (35)

The solution of this set of equations will yield the needed
monomer densities. The Helmholtz free energy is given as

A[{ρ(β)}] = Aid [{ρ(β)}] + AWertheim[{ρ(β)}] + AHS[{ρ(β)}],
(36)

where Aid[{ρ(β)}], AWertheim[{ρ(β)}], and AHS[{ρ(β)}] are the
contributions from ideal gas and excess contributions due to
chain formation/association (Eq. (19)) and hard sphere re-
pulsions. The functional derivatives of the ideal gas term is
known exactly

δβAideal[{ρ(β)}]
δρ(γ ) (�r)

= ln ρ(γ ) (�r) . (37)

For the hard sphere term we use Rosenfeld’s fundamental
measure theory25

δβAHS[{ρ(β)}]
δρ(γ ) (�r)

=
∫

d�r1
δ�ex,hs[{n(j )}]

δρ(γ ) (�r)
. (38)

To obtain the contribution due to AWertheim[{ρ(β)}] we take the
functional derivative of Eq. (6) and enforce the limit of com-
plete association of chain forming sites, we obtain

δβAWertheim

δρ(j )(�rj )
= ln

ρ
(j )
o (�rj )

ρ(j )(�rj )
− δ�c(o)

δρ(j )(�rj )
, (39)

where

δ�c(o)

δρ(j )(�rj )
=

m−1∑
β=1

∫
ρ(β,β+1)(�r1, �r2)

δ ln y(β,β+1)(�r1, �r2)

δρ(j )(�rj )
d�r1d�r2

+
∫

ρ(1)(�r1)ρ(m)(�r2)XA(�r1)XB(�r2)�poly(�r1, �r2)

× δ ln �poly(�r1, �r2)

δρ(j )(�rj )
d�r1d�r2

+
∫

ρ
(1,m)
ring (�r1, �rm)

δ ln �ring(�r1, �rm)

δρ(j )(�rj )
d�r1d�rm. (40)

The intermolecular association strength �poly(�r1, �r2) is given
as22

�poly(�r1, �r2) = κABf
(1,m)
AB (�r1, �r2)g(1m)(�r1, �r2). (41)

The two point density ρ
(1,m)
ring (�r1, �rm) is given by

ρ
(1,m)
ring (�r1, �rm)

ρ
(1)
o (�r1)ρ(m)

o (�rm)
=

∫
�̃Ring(1 . . . m)

m−1∏
∈=2

ρ(∈)
o (�r∈)d�r∈, (42)

We can relate the two point ring density to the total segment
1 density and ring fraction

ρ(1)(�r1)χring(�r1) =
∫

ρ
(1,m)
ring (�r1, �rm)d�rm, (43)

Using Eqs. (35)–(39) we can solve for the monomer densities

ρ(j )
o (�rj ) = exp

[
λ(j )(�rj ) + βμ(j )

]
, (44)

where

λ(j )(�rj ) = δ�c(o)

δρ(j )(�rj )
− δβAHS

δρ(j )(�rj )
− βV

(j )
ext

(�rj

)
. (45)

Using Eq. (44) to eliminate the monomer densities in Eq. (27)
we obtain

ρ(j )(�rj ) = exp[λ(j )(�rj ) + βμM ]
(
I

(j )
chain(�rj ) + I

(j )
Ring(�rj )

)
,

(46)

where μM = ∑m
k=1 μ(k) is the molecular chemical potential,

I
(j )
Ring(�rj ) is given by

I
(j )
Ring(�rj ) =

∫
�̃Ring(1 . . . m)

m∏
∈�=j

exp[λ(∈)(�r∈)]d�r∈. (47)

For fully flexible chains the chain integral I
(j )
chain(�rj ) is fac-

tored and evaluated with recursion relations

I
(j )
chain(�rj ) = I

(j )
1 (�rj )I (j )

2 (�rj ). (48)

The I
(j )
1 (�rj )′s are evaluated using the following recursion re-

lations:

I
(1)
1 (�r1) = 1

X
poly

A (�r1)
(49)

and for j > 1,

I
(j )
1 (�rj ) =

∫
�(j−1,j )(�rj−1, �rj )

× exp
[
λ(j−1)(�rj−1)

]
I

(j−1)
1 (�rj−1)d�rj−1. (50)

Here �(i,j )(�ri, �rj ) = �y(i,j )(�ri, �rj ) δ(|�ri−�rj |−σ (i,j ))
4π(σ (i,j ))2 where � is

the infinitely large magnitude of the chain forming Mayer
functions, as will be seen this term cancels exactly with an
identical term in the chemical potential. Similarly for the
I

(j )
2 (�rj )′s

I
(m)
2 (�rm) = 1

X
poly

B (�rm)
(51)
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and for j < m,

I
(j )
2 (�rj ) =

∫
�(j,j+1)

(�rj , �rj+1
)

× exp
[
λ(j+1)(�rj+1)

]
I

(j+1)
2 (�rj+1)d�rj+1. (52)

All that remains is the approximation of the reference system
correlation functions. Kierlik and Rosinberg26 approximated
the inhomogeneous hard sphere pair correlation function as a
first order functional Taylor series in density around the ho-
mogeneous result. If we took this path we would first be re-
quired to solve for the two point density Eq. (31) and then
integrate through Eq. (32) to obtain the segment densities.
A simpler approach17, 20 which has proven to yield accurate
results22, 27, 28 is to approximate the reference pair cavity cor-
relation function as the average of the potential of mean force

ln y(α,β)(�r1, �r2) = 1

2
ln

{
y(α,β) (�r1) y(α,β) (�r2)

}
, (53)

where the y(α,β) (�r1) are evaluated by using the bulk result at
an average density

ρ̄(γ ) (�r1) = 3

4πσ 3

∫
|r1−r2|<σ

d�r2ρ
(γ ) (�r2). (54)

Using Eqs. (23), (25), (32), (43), and (53) and assuming a
symmetric molecule we can rewrite Eq. (40) as

δ�c(o)

δρ(j )(�rj )
= 1

2

m−1∑
β=1

∫
(ρ(β)(�r1)+ρ(β+1)(�r1))

δ ln y(β,β+1)(�r1)

δρ(j )(�rj )
d�r1

+
∫

ρ(1)(�r1)(1 − XA(�r1))
δ ln y(1,m)(�r1)

δρ(j )(�rj )
d�r1. (55)

Equation (55) completes the density functional theory for the
competition between inter and intramolecular association in
associating chain fluids. Unfortunately, the ring integral in
Eq. (47) is irreducible and cannot be factorized. For large
flexible rings direct numerical evaluation of this integral by
quadrature will be computationally impractical. One possi-
ble resolution would be to evaluate the ring integral by single
chain Monte Carlo simulation.29, 30 This will be the subject of
a future study and will not be discussed further here. The Ap-
pendix gives a detailed discussion of methods to evaluate the
ring integral.

For the systems studied in the paper the Calculational
method is as follows. A bulk density ρ is specified and the
bulk XA is calculated by13

(
1

XA

)3

+ (ρ�poly − �ring − 1)

(
1

XA

)2

− 2ρ�poly

(
1

XA

)
− (ρ�poly)2 = 0. (56)

Using this XA the bulk X
poly

A can be calculated using Eq. (25)
which allows for the calculation of the bulk χ ring through
Eq. (23). We can solve for the excess contribution to the
chemical potential due to chain formation and association

μWerheim; the result for a homonuclear molecule is

βμWerheim = ln XA + ln X
poly

A − (m − 1) ln y

− (m − 1) ρm

∂ ln y

∂ρm

− (1 − XA) ρm

∂ ln y

∂ρm

− (m − 1) ln ρ − (m − 1) ln �, (57)

where ρm = mρ is the total segment density. The last term in
Eq. (57) containing the association strength for chain forming
bonds, �, gives an infinite contribution, however this term
cancels exactly with the �’s contained in the chain forming
Mayer functions. Now Eq. (46) for the density profiles and an
additional equation for the ring fraction

χring(�r) = I
(1)
ring(�r)

I
(1)
ring(�r) + I

(1)
chain(�r)

(58)

are solved using a Picard iteration where the initial guess for
the density and ring fraction profiles are the bulk values at
each point in the domain.

III. SIMULATION

To test the theory, DFT calculations and molecular simu-
lations will be compared for the classical case of a fluid in a
planar slit pore of width H with walls located in the xy plane
subject to the external potential

V
(j )
ext (zj ) =

{∞ if zj < 0 or zj > H

0 otherwise
. (59)

We will use the molecular model of Ghonasgi and Chapman13

who considered 4 tangentially bonded hard sphere segments
with association sites located on the first and fourth segments.
The association sites are arranged such that the vector from
the center of the associating segment to the association site is
always at a 90◦ angle to the vector which points from the cen-
ter of the associating segment to the center of the neighboring
segment on the chain, see Fig. 3. The chain molecules interact
with the potential given by Eq. (1) with the cutoff parameters
chosen as rc = 1.1 σ and θ c = 27◦.

Molecular simulations are performed in the NVT ensem-
ble using the general method described in Ref. 13. A total
of 287 chain molecules were simulated in a box with two
hard walls on opposite sides. For the other four sides, periodic
boundary conditions were applied. Maximum displacement
and angle change parameters are adjusted in each simula-
tion run to allow for an overall 30%–40% rate of acceptance.

FIG. 3. Diagram of associating 4–mer.
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FIG. 4. Density profiles for associating 4-mer with an average packing fraction η = 0.1. Curves are theoretical calculations (solid – associating end segment 1,
dashed – non-associating center segment 2) and symbols give Monte Carlo results (red – middle segment, black – end segment).

The simulations were carried out for 2(10)6 cycles, where
a cycle consists of an attempt to displace and reorient all
molecules once. The results for the density profiles and bond-
ing fractions were obtained after the molecular configura-
tions were sufficiently equilibrated. The system was said to
be equilibrated once the fractions of component 1 bonded
intramolecularly χ ring(z) and intermolecularly χ inter(z) had
achieved steady values throughout the pore. At the high as-
sociation energies ε/kT = 7 and 8 and at a packing fraction
of η = 0.3, χ ring(z) and χ inter(z) did not stabilize sufficiently
throughout the entire pore over the length of our simulations.

IV. RESULTS

In this section, we compare DFT calculations to the MC
simulations discussed in Sec. III for the case of an associating
4-mer chain near a hard wall. When the 4-mer chain self as-
sociates into a ring, the short range repulsions of the molecule
will keep the associated ring in a nearly planar configuration.
Hence, to a good approximation, we can approximate the ring
integral as that of a planar ring; see the Appendix for approx-
imation of I

(j )
ring for this case. All calculations performed in

this section are for the case εinter = εintra = ε and all den-
sity profiles are scaled by the average density of a segment in
the pore ρave. There are two segment types in this molecule;
the end segments with association sites will be called type 1,
and the middle segments will be called type 2. Figure 4 com-
pares MC and DFT density profile calculations at an average
packing fraction in the pore of η = 0.1. At this low density
both end and middle segments are depleted from the wall due
to a loss of configurational entropy near wall contact, with
the wall contact value of the end segment always larger than
that of the middle segment. As association energy increases,
the density of segment 2 in contact with the wall remains
approximately constant while that of segment 1 decreases.
The decrease in the wall density of segment 1 is the result
of a loss of configurations where this segment can be near

the wall when association into rings or longer m-mers occurs.
Figure 5 compares MC and DFT density profile calculations
for an average pore fraction η = 0.2. Like the η = 0.1 case,
increasing the association energy results in a decrease in the
density wall contact value of segment 1. The theory is very
accurate in predicting the density profile of the associating
segment, while it is less accurate for the middle segments. In
general these types of perturbation density functional theo-
ries will be most accurate for end type segments due to the
fact that the density profile of an end segment is closer to
that of the reference hard sphere fluid than that of a middle
segment.26 Figure 6 gives density profiles for η = 0.3. At this
packing fraction hard sphere packing effects result in an en-
hancement in density at wall contact. As the association en-
ergy is increased to ε = 6kT, the density contact value of seg-
ment 1 decreases while that of segment two remains constant.

In addition to density profiles we can also calculate the
fraction of segment type 1 bonded (associated) intramolecu-
lary χ ring, and the fraction of segment type 1 bonded inter-
molecularly χ inter; Fig. 7 compares DFT and MC calculations
of these quantities for average system packing fractions of η

= 0.1 and 0.2. In general, the fractions bonded intramolecu-
lary show a maximum around z = σ and approximately obtain
there bulk value at wall contact while the fractions bonded
intermolecularly show a steady decrease as the wall is ap-
proached. Intermolecular association is hindered near wall
contact due to the fact that there are less ways that two chains
can position and orient themselves such that association may
occur. The situation for intramolecular association is quite dif-
ferent. The degree of intramolecular association depends on
the probability that the two ends of the chain are positioned
such that association can occur. At wall contact approximately
half of the chain configurations which can lead to intramolec-
ular association in the bulk will be available, however when
segment 1 is in contact with the wall only half as many chain
configurations in total, as compared to the bulk, will be avail-
able; hence the ratio of these quantities at wall contact should



154103-7 Marshall, García-Cuéllar, and Chapman J. Chem. Phys. 136, 154103 (2012)

FIG. 5. Same as Figure 4 with η = 0.2.

approximately yield the bulk result giving a contact value of
χ ring nearly that of the bulk fluid. The MC and DFT predic-
tions are in excellent agreement.

The thermodynamics of the system depends on the frac-
tion of component 1 not bonded XA(z). Figure 8 compares MC
and DFT (solid lines) calculations for XA(z) at packing frac-
tions of η = 0.1, 0.2, and 0.3. For comparison we have in-
cluded DFT calculations (dashed lines) where the possibility
of intramolecular association was neglected. We see that the
current DFT is in excellent agreement with simulation, while
DFTs which do not include the possibility of intramolecular
association under predict the amount of association in the sys-
tem. For systems where intramolecular association can occur
the current DFT is clearly superior to previous versions of
DFT.

FIG. 6. Same as Figure 4 with η = 0.3.

With the current DFT we can study how the competition
between inter and intramolecular association affects partition-
ing at a solid/fluid interface. Figure 9 presents partition coeffi-
cients at packing fractions of η = 0.1 and 0.2. At η = 0.1 when
only intermolecular association is considered the partition co-
efficient continually decreases as association energy is in-
creased (T decreased) due to the fact that the chain molecules
are associating into longer m-mers which excludes associated
clusters from the wall. However, when intramolecular asso-
ciation is accounted for we see a minimum in the partition
coefficient near ε/kT = 11 where the partition coefficient be-
gins to increase with association energy. The minimum in the
partition coefficient results from the fact that at low densities
and high association energies (low T) intramolecular associa-
tion dominates;13 breaking intermolecular association bonds
to form intramolecular bonds results in smaller associated
clusters which can more easily approach the wall, resulting

FIG. 7. Comparison of DFT (curves) and MC (symbols) calculations of the
fractions of segment type 1 bonded intermolecularly, χ inter, and the fraction
of segment type 1 bonded intramoleculary χ ring.
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FIG. 8. Comparison of current DFT (solid lines), DFT with neglect of in-
tramolecular association (dashed lines) and MC (symbols) calculations for
fraction of segment type 1 not bonded XA(z) for average pore packing frac-
tions of η = 0.1, 0.2, and 0.3.

in an increase in the partition coefficient. At a packing frac-
tion of η = 0.2 this minimum disappears. Increasing density
further to η = 0.3 does not change the qualitative dependence
of the partition coefficient on association energy observed in
the η = 0.2 case.

Interestingly, the results in Figure 9 look very similar to
the compressibility factors calculated by MC simulations by
Ghonasgi and Chapman;13 they studied the bulk behavior of
this system. The link between the partition coefficient and the
bulk compressibility factor is the wall contact theorem which
states that the bulk pressure is equal to the wall contact value
of the density

P

kT
=

4∑
i=1

ρi (z = 0). (60)

FIG. 9. Partition coefficient K = ∫ 4σ

0 dz
ρ(z)/ρbulk

4σ
for packing fractions of

η = 0.1 top and η = 0.2 bottom. Curves give theoretical predictions (red
– current DFT, blue neglecting intramolecular association) and symbols give
MC simulations (red squares – both intra and intermolecular association, blue
triangles – intermolecular association only).

FIG. 10. Compressibility factor calculated through the wall contact theorem
compared to the MC simulations of Ghonasgi and Chapman.13 Curves and
symbols have same meaning as in Fig. 9.

Using Eq. (60) we calculated the compressibility factor
Z = P

ρkT
and compared the results to the simulations of

Ghonasgi and Chapman13 at a bulk packing fraction ηbulk

= 0.1093, Fig. 10.
We see that the MC and DFT calculations are in good

agreement. The minimum in the compressibility factor results
from trading intermolecular association bonds for intramolec-
ular association bonds. This results in smaller clusters of asso-
ciated 4-mers and a corresponding increase in the compress-
ibility factor.

Also important in many applications is the interfacial ten-
sion γ of the solid/fluid interface, where the interfacial tension
is calculated as the surface excess grand potential per area of
interface A

γ = � − �bulk

A
. (61)

Figure 11 presents DFT calculations for γ at packing frac-
tions of η = 0.1 and 0.2. At η = 0.2, increasing association
energy (decreasing T) results in an increase in γ at all en-
ergies considered. This increase in γ results from attractions
between the molecules becoming more significant, so more
energy is required to separate the molecules to form the inter-
face; the lower γ obtained when intramolecular association is

FIG. 11. Interfacial tension of solid/fluid interface at packing fractions of η

= 0.1 and 0.2. Curves have same meaning as Fig. 9.
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accounted for stems from the fact that molecules which are as-
sociated into rings have no attractions to the other molecules
in the system. At η = 0.1 there is still a continue increase in γ ,
as association energy is increased, when intramolecular asso-
ciation is neglected, however when intramolecular association
is accounted for there is a maximum near ε/kT = 8 and then
γ begins to decrease. This behavior is analogous to that ob-
served in the partition coefficient, however the maximum in γ

is located at a lower energy than the minimum K, suggesting
that the interfacial tension is more affected by ring formation
than the partition coefficient. Increasing density further to η

= 0.3 does not change the qualitative dependence of γ on as-
sociation energy observed in the η = 0.2 case.

V. CONCLUSIONS

We have developed the first density functional theory for
chain molecules capable of intramolecular and intermolecular
association. As a test, we performed NVT Monte Carlo simu-
lations for a 4-mer in a slit pore. The theory was shown to be
in excellent agreement with simulation results. It was shown
that inclusion of intramolecular association can result in dras-
tic qualitative changes to properties such as interfacial tension
and the partition coefficient; this behavior cannot be captured
with previous versions of DFT.
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APPENDIX: CALCULATION OF I (j)
r ing(zj )

In this appendix methods to evaluate the ring integral
I

(j )
ring(zj ) in planar 1D systems will be discussed. We begin

with the intramolecular association strength averaged over
segment orientations

�ring(�r1, �rm) = 〈
f

(intra)
AB (1 m)g(1,m)(1 m)

〉
�1,�m

= CκABy(1m)(�r1, �rm)F (intra)ξ (r1m), (A1)

where

ξ (r1m) =
{

1 σ ≤ r1m ≤ rc

0 otherwise
(A2)

and C is a normalization factor. When evaluating the ring in-
tegral I

(j )
ring(zj ) we are essentially counting the number of con-

figurations the ring can take with segment j at zj and the ring
located in the field created by the other molecules in the fluid
and the external potential; for each ring configuration the in-
tramolecular association strength �ring(�r1, �rm) controls if seg-
ments 1 and m located at locations �r1 and �rm in the fluid asso-
ciate to form a ring. As written, Eq. (47) is for a freely jointed
ring where non-adjacent segments along the ring can overlap.

For planar systems with inhomogeneities in the z direc-
tion the density is a function of z only and we can rewrite the

ring integral as

I
(j )
Ring(zj ) = CκABF (intra)

∫
Dring (z1 . . . zm) � (z1 . . . zm)

×
m∏

∈�=j

exp[λ(∈)(zj )]dzj . (A3)

The function �(z1. . . zm) is a purely geometric quantity given
by

�(z1 . . . zm) = 1

A

∫
δ(r12 − σ ) . . . δ(rm−1,m−σ )ξ (r1m)

m∏
i=1

dAi

(A4)

�(z1. . . zm) can be referenced to the location of a segment
such that it is independent of the absolute z position in the
pore. The integral �(z1. . . zm) is performed once and stored
for use. Dring(z1. . . zm) is the product of m cavity correlation
functions.

For flexible 4-mer chains the homogeneous �ring is
known13

�ring = F (intra)D, (A5)

where

D = 2 × 10−4

(1 − η)2 (A6)

and η is the bulk packing fraction. Normalizing the ring inte-
gral to this homogeneous result we find the constant C for a 4
segment chain

1

C
= κAB yA

DV

∫
dz1 . . . dz4� (z1 . . . z4) , (A7)

where V is volume and y is the bulk cavity correlation
function.

Now as a test we compare DFT calculations to MC simu-
lations of ring fractions for a fluid which can only intramolec-
ularly associate; Fig. 12 shows these results. The theory and
simulation are in fair agreement. The theory predicts good
ring fraction contact values, however it under predicts the ring
peak located near z = σ and does not capture the dips near z
= 2σ . These deficiencies arise from the fully flexible treat-
ment of the ring integral. The fully flexible treatment should
be sufficient for larger rings, however the self-avoiding asso-
ciated 4-mer ring is sufficiently rigid that the fully flexible
treatment of the ring integral will incur error.

One solution is to evaluate both the ring and chain in-
tegrals such that no intramolecule segment overlap is allowed
(self-avoiding). An alternative solution which is computation-
ally simpler and faster than the self-avoiding case is to treat
the ring integral as rigid with segments 1 and 4 bonded at
contact. That is

�rigid (z1 . . . z4) = 1

A

∫
δ(r12 − σ )δ(r23 − σ )δ(r43 − σ )

× δ(r41 − σ )δ(r13 −
√

2σ )δ(r24 −
√

2σ )
4∏

i=1

dAi. (A8)

Evaluating the ring integral this way will under predict the
number of molecular configurations that can lead to ring
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FIG. 12. Fraction of segment 1 bonded intramolecularly χ ring(curves – DFT,
symbols – NVT simulation) for a fluid which is only allowed to intramolecu-
lary associate (no intermolecular association) and the rings are freely jointed.

formation due to the fact that the actual ring has flexibility
and association occurs within a shell of thickness (rc − σ );
to correct for this fact we simply include the probability W
in �ring for the probability that the chain is in a configuration
where the two end segments can associate

�ring(�r1, �r4) = CκABy(1m)(�r1, �r4)F (intra)W (�r1) , (A9)

where W (�r1) is the probability that in a system with chains
of length m = 4 and bulk density ρ that if we anchor segment
1 at a position �r1 that segment 4 will be in a position where
intramolecular association can occur; that is r14 ≥ σ and r14

≤ rc. We will approximate this quantity as

W (�r1) =
∫
r14≥σ,r14≤rc

ρ
(1,4)
chain ref (�r1, �r4) d�r4∫

all conf igurations
ρ

(1,4)
chain ref (�r1, �r4) d�r4

=
∫
r14≥σ,r14≤rc

ρ
(1,4)
chain ref (�r1, �r4) d�r4

ρ
(1)
chain ref (�r1)

= I shell
chain ref (�r1)

I
(1)
2,chain ref (�r1)

,

(A10)

The function ρ
(1,4)
chain ref (�r1, �r4) is the two point chain density

of the non-associating fully flexible chain reference system.

ρ
(1,4)
chain ref (�r1, �r4) = ρ(1,4) (�r1, �r4)

∣∣
non-associating

(A11)

For the 1D system the integral over the bonding shell of a
segment 1 sphere at position �r1 in the fully flexible reference
fluid is

I shell
chain ref (z1) =

∫
Dchain (z1 . . . z4) � (z1 . . . z4)

×
4∏

∈=2

exp
[
λ

(∈)
chain ref (z∈)

]
dz∈, (A12)

FIG. 13. Calculation of W(z) for η = 0.1, 0.2, and 0.3.

where �(z1. . . z4) is given by Eq. (A4) and Dchain is the prod-
uct of 3 cavity correlation functions.

Since W(z1) is a functional of the chain reference system
density profile we can say

δ ln �ring (z1, z4)

δρ(k) (z)
= δ ln y(1,4) (z1, z4)

δρ(k) (z)
. (A13)

We have calculated W(z)/Wbulk for a freely jointed 4-mer chain
near a hard wall for packing fractions of η = 0.1, 0.2, and 0.3.
These results are presented in Fig. 13. At each density we see
a distinct maximum located near z = σ and at wall contact the
probability is approximately equal to its bulk value. We note
that for η = 0.3 the function W(z)/Wbulk has an odd curvature
in the region σ /2 < z < σ .

In molecular simulation two segments can be con-
sidered “bonded” even if the association energy is zero.
Figure 14 presents simulation results for ring fractions in the
non-associating chain reference system at a packing fraction
of η = 0.3. As can be seen the odd shape present in W(z) is
also present in this quantity, showing that this is indeed a fea-
ture of the chain reference system.

As a test we calculated ring fractions for a 4-mer chain
which can only intramolecularly associate, εinter = 0, and
compared these results to molecular simulation; the results
can be seen in Fig. 15. For packing fractions of η = 0.1 and
0.2 the theoretical results are in excellent agreement with sim-
ulation. For η = 0.3 the theoretical results are in good agree-
ment with the simulation data over most of the domain, how-
ever, the peak in the theoretical calculations near z ∼ σ has
an odd shape. This odd shape is the result of the curvature of
the reference system W(z) at this density as discussed above.
Overall the agreement with simulation is much better than the
fully flexible case.

FIG. 14. Fraction of component 1 not bonded in the non-associating refer-
ence system calculated by NVT simulation for a packing fraction of η = 0.3.
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FIG. 15. Same as Fig. 12 except associated rings are assumed rigid and
planar.

To obtain improved results at η = 0.3 we can restrict the
chain integral I

(k)
chain and ring integral I

(k)
ring such that no in-

tramolecular overlaps are allowed (self avoiding). The chain
integral will no longer be able to be factored, Eq. (48) will
no longer be valid, and additional multi-dimensional integrals
will need to be performed. Since we will not assume that the
associated ring is rigid with segments 1 and 4 bonded at con-
tact we will no longer need the reference system probabil-
ity W(z). The methods to develop I

(k)
chain (z) and I

(k)
ring (z) for

the self-avoiding case is similar to the development of the

FIG. 16. Same as bottom panel of Fig. 12 for η = 0.3 except chains and
associated rings are self-avoiding.

fully flexible ring integral Eq. (A3) except now additional
constraints are added. In the interest of brevity these equa-
tions will not be derived here. For η = 0.1 and 0.2 nearly the
same results are obtained for ring fractions as the rigid case.
Figure 16 shows the results for ring fractions of an intramolec-
ularly associating fluid an average packing fraction of η = 0.3.
The results are in excellent agreement with simulation. The
self-avoiding method gives the most accurate results at high
density; however, the rigid ring method is computationally
faster. For this reason we will employ the rigid ring method
to study the competition between intra and intermolecular
association.
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