8,297 research outputs found

    Measurement of the Nodal Precession of WASP-33 b via Doppler Tomography

    Get PDF
    We have analyzed new and archival time series spectra taken six years apart during transits of the hot Jupiter WASP-33 b, and spectroscopically resolved the line profile perturbation caused by the Rossiter-McLaughlin effect. The motion of this line profile perturbation is determined by the path of the planet across the stellar disk, which we show to have changed between the two epochs due to nodal precession of the planetary orbit. We measured rates of change of the impact parameter and the sky-projected spin-orbit misalignment of db/dt=0.02280.0018+0.0050db/dt=-0.0228_{-0.0018}^{+0.0050} yr1^{-1} and dλ/dt=0.4870.076+0.089d\lambda/dt=-0.487_{-0.076}^{+0.089}~^{\circ} yr1^{-1}, respectively, corresponding to a rate of nodal precession of dΩ/dt=0.3730.083+0.031d\Omega/dt=0.373_{-0.083}^{+0.031}~^{\circ} yr1^{-1}. This is only the second measurement of nodal precession for a confirmed exoplanet transiting a single star. Finally, we used the rate of precession to set limits on the stellar gravitational quadrupole moment of 9.4×105<J2<6.1×1049.4\times10^{-5}<J_2<6.1\times10^{-4}.Comment: Published in ApJL. 5 pages, 3 figures. Corrected error in the calculation of J_

    Tracing the Origins and Evolution of Small Planets using Their Orbital Obliquities

    Get PDF
    We recommend an intensive effort to survey and understand the obliquity distribution of small close-in extrasolar planets over the coming decade. The orbital obliquities of exoplanets--i.e., the relative orientation between the planetary orbit and the stellar rotation--is a key tracer of how planets form and migrate. While the orbital obliquities of smaller planets are poorly explored today, a new generation of facilities coming online over the next decade will make such observations possible en masse. Transit spectroscopic observations with the extremely large telescopes will enable us to measure the orbital obliquities of planets as small as 2R\sim2R_{\oplus} around a wide variety of stars, opening a window into the orbital properties of the most common types of planets. This effort will directly contribute to understanding the formation and evolution of planetary systems, a key objective of the National Academy of Sciences' Exoplanet Science Strategies report.Comment: Submitted to the Astro2020 call for science white papers. 7 pages, 2 figure

    The gold standard: accurate stellar and planetary parameters for eight Kepler M dwarf systems enabled by parallaxes

    Get PDF
    We report parallaxes and proper motions from the Hawaii Infrared Parallax Program for eight nearby M dwarf stars with transiting exoplanets discovered by Kepler. We combine our directly measured distances with mass-luminosity and radius–luminosity relationships to significantly improve constraints on the host stars’ properties. Our astrometry enables the identification of wide stellar companions to the planet hosts. Within our limited sample, all the multi-transiting planet hosts (three of three) appear to be single stars, while nearly all (four of five) of the systems with a single detected planet have wide stellar companions. By applying strict priors on average stellar density from our updated radius and mass in our transit fitting analysis, we measure the eccentricity probability distributions for each transiting planet. Planets in single-star systems tend to have smaller eccentricities than those in binaries, although this difference is not significant in our small sample. In the case of Kepler-42bcd, where the eccentricities are known to be ≃0, we demonstrate that such systems can serve as powerful tests of M dwarf evolutionary models by working in L⋆ − ρ⋆ space. The transit-fit density for Kepler- 42bcd is inconsistent with model predictions at 2.1σ (22%), but matches more empirical estimates at 0.2σ (2%), consistent with earlier results showing model radii of M dwarfs are underinflated. Gaia will provide high-precision parallaxes for the entire Kepler M dwarf sample, and TESS will identify more planets transiting nearby, late-type stars, enabling significant improvements in our understanding of the eccentricity distribution of small planets and the parameters of late-type dwarfs.Support for Program number HST-HF2-51364.001-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu. (HST-HF2-51364.001-A - NASA through Space Telescope Science Institute; NAS5-26555 - NASA; NNX09AF08G - NASA Office of Space Science; NASA Science Mission directorate

    Biophysical assessment of reefs in Keppel Bay: a baseline study (April 2007)

    Get PDF
    The Keppel Islands are a group of 16 continental islands lying 18 km off the coastal town of Yeppoon in the southern Great Barrier Reef. Located in the shallow basin to the north of Keppel Bay, the islands are host to a patchwork of fringing reefs in various forms of development. Coral communities are abundant in some locations, and coral cover is high (60 to 70%) relative to the average at sites surveyed by the Australian Institute of Marine Science’s Long-Term Monitoring Program (~35%), and are often dominated by extensive stands of branching Acropora that extend into shallow water. These ‘staghorn’ corals are vulnerable to impacts caused by environmental stresses such as elevated sea temperature (causing coral bleaching events), degraded water quality (associated with hyposaline floods events) and physical damage (from cyclones, storms and anchoring). The Fitzroy River, one of the largest catchments in Queensland, is about 40 km to the south of the Keppel Islands. Large flood plumes occur approximately every 10 years, and the soft riverine sediments are regularly re-suspended in the shallow bay by wind and tide action causing high turbidity. Heavy rainfall also affects the shallow reef flat habitats, with reported incidences of coral mortality caused by heavy rain at times of extreme low tidesID: 176

    Investigation of the Effects of Growth Environment on the Ferric Reducing Antioxidant Power of Selected Plant Species

    Get PDF
    Metabolism within the human body creates multiple oxidant by-products. These oxidants may cause cell injury, damage to DNA, and other complications leading to the development of chronic disease. Antioxidants are important dietary components which defend against oxidative damage by scavenging the oxidant by-products. Research has shown that diets rich in antioxidants offer protection against various chronic diseases. The goal of this research is to determine the effects of varying growing conditions on the production of antioxidants, and to ultimately find the best possible plant-growth environment for maximum production of antioxidants. Each plant was grown under three different environmental conditions; positive, negative, and control treatment. The positive treatment consisted of supplying water to field capacity with fertilizer, the negative treatment consisted supplying half of the water required to reach field capacity with no fertilizer, and the control treatment consisted of supplying water to field capacity with no fertilizer. Ferric reducing antioxidant levels were then determined. The ferric reducing antioxidant power evaluates antioxidant potential by reducing ferric iron (Fe3+) to its ferrous form (Fe2+). Addition of excess ferric ions result in the development of a Prussian blue color. The ferric reducing antioxidant power of the extracts was measured by reading the absorbance at 750 nm using a spectrophotometer. The ferric reducing antioxidant power assay was performed on extracts of red clover (Trifolium pratense), Amur honeysuckle (Lonicera maackii) and wild garlic (Allium vineale). The differing growing conditions resulted in variation in the production of antioxidants by the plants. The data obtained revealed that the plants grown under the negative treatment produced a significantly lower level of antioxidants when compared to the plants grown under the positive treatment. These results indicate that growing conditions can influence antioxidant production in plants

    Astro2020 Science White Paper: Toward Finding Earth 2.0: Masses and Orbits of Small Planets with Extreme Radial Velocity Precision

    Get PDF
    Having discovered that Earth-sized planets are common, we are now embarking on a journey to determine if Earth-like planets are also common. Finding Earth-like planets is one of the most compelling endeavors of the 21st century - leading us toward finally answering the question: Are we alone? To achieve this forward-looking goal, we must determine the masses of the planets; the sizes of the planets, by themselves, are not sufficient for the determination of the bulk and atmospheric compositions. Masses, coupled with the radii, are crucial constraints on the bulk composition and interior structure of the planets and the composition of their atmospheres, including the search for biosignatures. Precision radial velocity is the most viable technique for providing essential mass and orbit information for spectroscopy of other Earths. The development of high quality precision radial velocity instruments coupled to the building of the large telescope facilities like TMT and GMT or space-based platforms like EarthFinder can enable very high spectral resolution observations with extremely precise radial velocities on minute timescales to allow for the modeling and removal of radial velocity jitter. Over the next decade, the legacy of exoplanet astrophysics can be cemented firmly as part of humankind's quest in finding the next Earth - but only if we can measure the masses and orbits of Earth-sized planets in habitable zone orbits around Sun-like stars.Comment: Science White Paper Submitted to the Astro2020 Decadal Survey (35 co-signers in addition to co-authors

    A Model of the Ocean Overturning Circulation with Two Closed Basins and a Reentrant Channel

    Get PDF
    Zonally averaged models of the ocean overturning circulation miss important zonal exchanges of waters between the Atlantic and Indo-Pacific Oceans. A two-layer, two-basin model that accounts for these exchanges is introduced and suggests that in the present-day climate the overturning circulation is best described as the combination of three circulations: an adiabatic overturning circulation in the Atlantic Ocean associated with transformation of intermediate to deep waters in the north, a diabatic overturning circulation in the Indo- Pacific Ocean associated with transformation of abyssal to deep waters by mixing, and an interbasin circulation that exchanges waters geostrophically between the two oceans through the Southern Ocean. These results are supported both by theoretical analysis of the two-layer, two-basin model and by numerical simulations of a three-dimensional ocean model. Keywords: Ocean; Meridional overturning circulation; Ocean circulation; Mixing; Thermohaline circulationNational Science Foundation (U.S.) (Award OCE-1536515)National Science Foundation (U.S.) (Award OCE-1233832
    corecore