6,151 research outputs found

    A revision of the Sclerocoelus galapagensis group (Diptera: Sphaeroceridae: Limosininae)

    Get PDF
    The Sclerocoelus galapagensis group is defined and revised, including the description of S. galapagensis new species from the Galapagos Islands; S. caribensis new species from the Caribbean and adjacent areas; S. brasilensis new species from Brazil, Ecuador, Colombia, and Panama; S. hemorrhoidal is new species from Ecuador and Venezuela; and S. andensis new species from Argentina, Bolivia, and Venezuela. The south Atlantic species Sclerocoelus subbrevipennis (Frey), new combination, is redescribed as a member of the S. galapagensis group, and is considered the sister species to the rest of the species group. A key to species, character matrix, and cladogram are provided

    Inferring context-sensitive probablistic boolean networks from gene expression data under multi-biological conditions

    Get PDF
    In recent years biological microarrays have emerged as a high-throughput data acquisition technology in bioinformatics. In conjunction with this, there is an increasing need to develop frameworks for the formal analysis of biological pathways. A modeling approach defined as Probabilistic Boolean Networks (PBNs) was proposed for inferring genetic regulatory networks [1]. This technology, an extension of Boolean Networks [2], is able to capture the time-varying dependencies with deterministic probabilities for a series of sets of predictor functions

    A fast method for computing the output of rank order filters within arbitrarily shaped windows

    Get PDF
    Rank order filters are used in a multitude of image processing tasks. Their application can range from simple preprocessing tasks which aim to reduce/remove noise, to more complex problems where such filters can be used to detect and segment image features. There is, therefore, a need to develop fast algorithms to compute the output of this class of filter. A number of methods for efficiently computing the output of specific rank order filters have been proposed [1]. For example, numerous fast algorithms exist that can be used for calculating the output of the median filter. Fast algorithms for calculating morphological erosions and dilations - which are also a special case of the more general rank order filter - have also been proposed. In this paper we present an extension of a recently introduced method for computing fast morphological operators to the more general case of rank order filters. Using our method, we are able to efficiently compute any rank, using any arbitrarily shaped window, such that it is possible to quickly compute the output of any rank order filter. We demonstrate the usefulness and efficiency of our technique by implementing a fast method for computing a recent generalisation of the morphological Hit-or-Miss Transform which makes it more robust in the presence of noise. We also compare the speed and efficiency of this routine with similar techniques that have been proposed in the literature

    Metalogue: trying to talk about (un)sustainability - a reflection on experience

    Get PDF
    This paper considers dilemmas for organization and management scholars studying and writing about environmental sustainability. It suggests that sustainability requires new ways of thinking which in turn require new forms of representation to help foster their emergence. Consequently, the paper partly takes the experimental form of a ‘metalogue’ (Bateson, 1972), in which the structure of the conversation between the authors is intended to be reflective of the content of the problematic subject discussed, in this case their experiences of trying to raise critical questions about scholarship for sustainability. This experimental form, which invites the reader to eschew expectations of typical points of orientation, enables an appreciation of how forms of argument seem to replicate epistemological challenges in the sustainability field. The paper shows how metaloguing becomes not only an alternative form but also an inquiry process for considering sustainability that can support embodied reflexivity, critical questioning and appreciation of entanglements of people-scholars

    Medical image enhancement using threshold decomposition driven adaptive morphological filter

    Get PDF
    One of the most common degradations in medical images is their poor contrast quality. This suggests the use of contrast enhancement methods as an attempt to modify the intensity distribution of the image. In this paper, a new edge detected morphological filter is proposed to sharpen digital medical images. This is done by detecting the positions of the edges and then applying a class of morphological filtering. Motivated by the success of threshold decomposition, gradientbased operators are used to detect the locations of the edges. A morphological filter is used to sharpen these detected edges. Experimental results demonstrate that the detected edge deblurring filter improved the visibility and perceptibility of various embedded structures in digital medical images. Moreover, the performance of the proposed filter is superior to that of other sharpener-type filters

    Classification of ordered texture images using regression modelling and granulometric features

    Get PDF
    Structural information available from the granulometry of an image has been used widely in image texture analysis and classification. In this paper we present a method for classifying texture images which follow an intrinsic ordering of textures, using polynomial regression to express granulometric moments as a function of class label. Separate models are built for each individual moment and combined for back-prediction of the class label of a new image. The methodology was developed on synthetic images of evolving textures and tested using real images of 8 different grades of cut-tear-curl black tea leaves. For comparison, grey level co-occurrence (GLCM) based features were also computed, and both feature types were used in a range of classifiers including the regression approach. Experimental results demonstrate the superiority of the granulometric moments over GLCM-based features for classifying these tea images

    Morphological granulometry for classification of evolving and ordered texture images.

    Get PDF
    In this work we investigate the use of morphological granulometric moments as texture descriptors to predict time or class of texture images which evolve over time or follow an intrinsic ordering of textures. A cubic polynomial regression was used to model each of several granulometric moments as a function of time or class. These models are then combined and used to predict time or class. The methodology was developed on synthetic images of evolving textures and then successfully applied to classify a sequence of corrosion images to a point on an evolution time scale. Classification performance of the new regression approach is compared to that of linear discriminant analysis, neural networks and support vector machines. We also apply our method to images of black tea leaves, which are ordered according to granule size, and very high classification accuracy was attained compared to existing published results for these images. It was also found that granulometric moments provide much improved classification compared to grey level co-occurrence features for shape-based texture images

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161–173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37–67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575–585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167–1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9–14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208–209, 2000. [48] M. K¨oppen, C.H. Nowack and G. R¨osel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195–202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251–267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175–178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67–73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169–172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749–750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167–185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69–87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674–693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367–381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    Challenges of mentorship

    Get PDF
    Mentorship is the fourteenth series of ‘Midwifery basics’ targeted at practising midwives. It aims to provide information to raise awareness of the impact of the work of midwives on student learning and ultimately on women’s experience and encourage midwives to seek further information through a series of activities. In this sixth article Charlotte Kenyon, Stephen Hogarth and Joyce Marshall consider some of the challenges to mentorship and possible solutions to these
    corecore