223 research outputs found

    Controlling the dissociation of ligands from the adenosine A(2A) receptor through modulation of salt bridge strength

    Get PDF
    Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge StrengthElena Segala, Dong Guo, Robert K. Y. Cheng, Andrea Bortolato, Francesca Deflorian, Andrew S. Doré, James C. Errey, Laura H. Heitman, Adriaan P. IJzerman, Fiona H. Marshall, and Robert M. CookeHeptares Therapeutics Ltd, Biopark Broadwater Road, Welwyn Garden City AL7 3AX, U.K.Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University P.O. Box 9502, 2300 RA Leiden, the NetherlandsAbstractThe association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized.Medicinal Chemistr

    Holocene El Niño–Southern Oscillation variability reflected in subtropical Australian precipitation

    Get PDF
    The La Niña and El Niño phases of the El Niño-Southern Oscillation (ENSO) have major impacts on regional rainfall patterns around the globe, with substantial environmental, societal and economic implications. Long-term perspectives on ENSO behaviour, under changing background conditions, are essential to anticipating how ENSO phases may respond under future climate scenarios. Here, we derive a 7700-year, quantitative precipitation record using carbon isotope ratios from a single species of leaf preserved in lake sediments from subtropical eastern Australia. We find a generally wet (more La Niña-like) mid-Holocene that shifted towards drier and more variable climates after 3200 cal. yr BP, primarily driven by increasing frequency and strength of the El Niño phase. Climate model simulations implicate a progressive orbitally-driven weakening of the Pacific Walker Circulation as contributing to this change. At centennial scales, high rainfall characterised the Little Ice Age (~1450–1850 CE) in subtropical eastern Australia, contrasting with oceanic proxies that suggest El Niño-like conditions prevail during this period. Our data provide a new western Pacific perspective on Holocene ENSO variability and highlight the need to address ENSO reconstruction with a geographically diverse network of sites to characterise how both ENSO, and its impacts, vary in a changing climate
    • …
    corecore