8,108 research outputs found

    Thoughts on financial derivatives, systematic risk, and central banking: a review of some recent developments

    Get PDF
    This paper critically reviews the literature examining the role of central banks in addressing systemic risk. We focus on how the growth in derivatives markets might affect that role. Analysis of systemic risk policy is hampered by the lack of a consensus theory of systemic risk. We propose a set of criteria that theories of systemic risk should satisfy, and we critically discuss a number of theories proposed in the literature. We argue that concerns about systemic effects of derivatives appear somewhat overstated. In particular, derivative markets do not appear unduly prone to systemic disturbances. Furthermore, derivative trading may increase informational efficiency of financial markets and provide instruments for more effective risk management. Both of these effects tend to reduce the danger of systemic crises. However, the complexity of derivative contracts (in particular, their high implicit leverage and nonlinear payoffs) do complicate the process of regulatory oversight. In addition, derivatives may make the conduct of monetary policy more difficult. Most theories of systemic risk imply a critical role for central banks as the ultimate provider of liquidity. However, the countervailing danger of moral hazard must be recognized and addressed through vigilant supervision.Banks and banking, Central ; Derivative securities ; Risk

    REPRODUCTIVE CHARACTER DISPLACEMENT AND SPECIATION IN PERIODICAL CICADAS, WITH DESCRIPTION OF A NEW SPECIES, 13-YEAR MAGICICADA NEOTREDECIM

    Full text link
    Acoustic mate-attracting signals of related sympatric, synchronic species are always distinguishable, but those of related allopatric species sometimes are not, thus suggesting that such signals may evolve to “reinforce” premating species isolation when similar species become sympatric. This hypothesis predicts divergences restricted to regions of sympatry in partially overlapping species, but such “reproductive character displacement” has rarely been confirmed. We report such a case in the acoustic signals of a previously unrecognized 13-year periodical cicada species, Magicicada neotredecim , described here as a new species (see Appendix). Where M. neotredecim overlaps M. tredecim in the central United States, the dominant male call pitch (frequency) of M. neotredecim increases from approximately 1.4 kHz to 1.7 kHz, whereas that of M. tredecim remains comparatively stable. The average preferences of female M. neotredecim for call pitch show a similar geographic pattern, changing with the call pitch of conspecific males. Magicicada neotredecim differs from 13-year M. tredecim in abdomen coloration, mitochondrial DNA, and call pitch, but is not consistently distinguishable from 17-year M. septendecim ; thus, like other Magicicada species, M. neotredecim appears most closely related to a geographically adjacent counterpart with the alternative life cycle. Speciation in Magicicada may be facilitated by life-cycle changes that create temporal isolation, and reinforcement could play a role by fostering divergence in premating signals prior to speciation. We present two theories of Magicicada speciation by life-cycle evolution: “nurse-brood facilitation” and “life-cycle canalization.”Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73691/1/j.0014-3820.2000.tb00564.x.pd

    Tracing the Origins and Evolution of Small Planets using Their Orbital Obliquities

    Get PDF
    We recommend an intensive effort to survey and understand the obliquity distribution of small close-in extrasolar planets over the coming decade. The orbital obliquities of exoplanets--i.e., the relative orientation between the planetary orbit and the stellar rotation--is a key tracer of how planets form and migrate. While the orbital obliquities of smaller planets are poorly explored today, a new generation of facilities coming online over the next decade will make such observations possible en masse. Transit spectroscopic observations with the extremely large telescopes will enable us to measure the orbital obliquities of planets as small as 2R\sim2R_{\oplus} around a wide variety of stars, opening a window into the orbital properties of the most common types of planets. This effort will directly contribute to understanding the formation and evolution of planetary systems, a key objective of the National Academy of Sciences' Exoplanet Science Strategies report.Comment: Submitted to the Astro2020 call for science white papers. 7 pages, 2 figure

    Purification of 26S Proteasomes and Their Subcomplexes from Plants

    Get PDF
    The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type plants, and another that employs the genetic replacement of individual subunits with epitope-tagged variants combined with affinity purification. In addition to these purification protocols, we describe methods commonly used to analyze the activity and composition of the complex

    Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures

    Get PDF
    The severity of sustained injury resulting from assault-related violence can be minimized by reducing detection time. However, it has been shown that human operators perform poorly at detecting events found in video footage when presented with simultaneous feeds. We utilize computer vision techniques to develop an automated method of violence detection that can aid a human operator. We observed that violence in city centre environments often occur in crowded areas, resulting in individual actions being occluded by other crowd members. Measures of visual texture have shown to be effective at encoding crowd appearance. Therefore, we propose modelling crowd dynamics using changes in crowd texture. We refer to this approach as Violent Crowd Texture (VCT). Real-world surveillance footage of night time environments and the violent flows dataset were tested using a random forest classifier to evaluate the ability of the VCT method at discriminating between violent and non-violent behaviour. Our method achieves ROC values of 0.98 and 0.91 on our own real world CCTV dataset and the violent flows dataset respectively

    NASA advanced aeronautics design solar powered remotely piloted vehicle

    Get PDF
    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process
    corecore