28,807 research outputs found

    Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 1: Theory and application

    Get PDF
    A method is developed to determine the flow field of a body of revolution in separated flow. The technique employed is the use of the computer to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the required two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separation regions and wake vortex patterns are determined

    The broad-band X-ray spectrum of a QSO sample

    Get PDF
    A sample of 25 QSOs was used to investigate the average spectrum between the soft X-ray energy band of the Einstein Observatory image proportional counter, and the higher energy band of the HEAO 1 A2 experiment. The spectrum is similar to thoe exhibited by Seyfert galaxies and narrow emission line galaxies above 2 keV. The spectrum is soft enough that if these objects are typical of the higher redshift, more radio-quiet QSOs, then it is possible to exclude QSOs as being the dominant origin of the diffuse X-ray background

    Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 2: Computer program description

    Get PDF
    A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described

    A limit to the X-ray luminosity of nearby normal galaxies

    Get PDF
    Emission is studied at luminosities lower than those for which individual discrete sources can be studied. It is shown that normal galaxies do not appear to provide the numerous low luminosity X-ray sources which could make up the 2-60 keV diffuse background. Indeed, upper limits suggest luminosities comparable with, or a little less than, that of the galaxy. This is consistent with the fact that the average optical luminosity of the sample galaxies within approximately 20 Mpc is slightly lower than that of the galaxy. An upper limit of approximately 1% of the diffuse background from such sources is derived

    Gratings photowritten in ion-exchanged glass channel waveguides

    Get PDF
    Gratings are photowritten in ion-exchanged glass channel waveguides. The transmission of these waveguides shows a rejection dip of almost 20dB. The polarisation dependence of these waveguide gratings is measured and discussed

    Zinc depolarized electrochemical CO2 concentration

    Get PDF
    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers

    Grating formation in BGG31 glass by UV exposure

    Get PDF
    A three-dimensional index variation grating in bulk BGG31 glass written using neither hydrogen loading nor germanium doping is demonstrated. This material is useful for fabricating ion-exchanged waveguides, and its photosensitivity to ultraviolet (UV) radiation at 248nm has not been previously explored. Intensity measurements of the Bragg diffracted spots indicated a maximum index variation (Delta n) of similar to 4 x 10(-5)

    Electrochemical carbon dioxide concentrator: Math model

    Get PDF
    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range

    Electrochemical carbon dioxide concentrator subsystem math model

    Get PDF
    A steady state computer simulation model has been developed to describe the performance of a total six man, self-contained electrochemical carbon dioxide concentrator subsystem built for the space station prototype. The math model combines expressions describing the performance of the electrochemical depolarized carbon dioxide concentrator cells and modules previously developed with expressions describing the performance of the other major CS-6 components. The model is capable of accurately predicting CS-6 performance over EDC operating ranges and the computer simulation results agree with experimental data obtained over the prediction range

    Evaluation of a spacecraft nitrogen generator

    Get PDF
    A research and development program was successfully completed towards the development of a method of generating nitrogen for cabin leakage makeup aboard space vehicles. The nitrogen generation concept used liquid hydrazine as the stored form of nitrogen. This reduced tankage and expendables weight associated with high pressure gaseous and cryogenic liquid nitrogen storage. The hydrazine was catalytically dissociated to yield a mixture of nitrogen and hydrogen. The latter was separated to provide the makeup nitrogen. The hydrogen will be used in the reduction of metabolic carbon dioxide
    • …
    corecore