864 research outputs found

    Multisensory Integration of Anticipated Cardiac Signals with Visual Targets Affects Their Detection among Multiple Visual Stimuli

    Get PDF
    Many studies have elucidated the multisensory processing of different exteroceptive signals (e.g., auditory-visual stimuli), but less is known about the multisensory integration of interoceptive signals with exteroceptive information. Here, we investigated the perceptual outcomes and electrophysiological brain mechanisms of cardio-visual integration by using participants’ electrocardiogram signals to control the color change of a visual target in dynamically changing displays. Reaction times increased when the target change coincided with strong cardiac signals concerning the state of cardiovascular arousal (i.e., presented at the end of ventricular systole), compared to when the target change occurred at a time when cardiac arousal was relatively low (i.e., presented at the end of ventricular diastole). Moreover, the concurrence of the target change and cardiac arousal signals modulated the event-related potentials and the beta power in an early period (~100 ms after stimulus onset), and decreased the N2pc and the beta lateralization in a later period (~200 ms after stimulus onset). Our results suggest that the multisensory integration of anticipated cardiac signals with a visual target negatively affects its detection among multiple visual stimuli, potentially by suppressing sensory processing and reducing attention toward the visual target. This finding highlights the role of cardiac information in visual processing and furthers our understanding of the brain dynamics underlying multisensory perception involving both interoception and exteroception

    Keep calm and age well: Behavioural and electrophysiological investigations into the effects of cumulative stress exposure on ageing cognition

    Get PDF
    The research presented in this thesis comprises a body of work dedicated to continuing and enriching past exploration into the impact cumulative life stress exerts on ageing cognition. In order to extend previous work into this topic, behavioural measures were paired with electroencephalographic recordings of the cortical oscillatory activity thought to underlie cognitive operations. In a theoretical sense, work presented in this thesis strengthens past investigations highlighting the adverse effects of life stress on elderly peoples’ working memory abilities by replicating the effect under conditions of increased experimental rigour. It further provides evidence that the detrimental effects of cumulative stress extend to the domains of executive control and spatial memory. Electrophysiological findings obtained during task execution and at rest indicate pronounced changes in the oscillatory activity of aged high stress individuals’ delta, theta, alpha and gamma bands and are thus the first to demonstrate that cumulative stress affects the underlying neural processes related to successful task execution. As such, from a methodological standpoint, the current research strongly advocates the use of neuroscientific tools such as the electroencephalogram to gain an increased understanding of the mechanisms by which increased stress exposure evokes progressive cognitive decline in old age. Combined, the work presented in this thesis demonstrates the negative consequences of leading a highly stressful life for the integrity of multiple cognitive functions in old age and is the first to provide an indication of how cumulative stress affects both cortical and (indirectly) subcortical regions of the brain necessary for successful cognitive functioning

    From the inside out: Interoceptive feedback facilitates the integration of visceral signals for efficient sensory processing

    Get PDF
    Neuroscientific studies have mainly focused on the way humans perceive and interact with the external world. Recent work in the interoceptive domain indicates that the brain predictively models information from inside the body such as the heartbeat and that the efficiency with which this is executed can have implications for exteroceptive processing. However, to date direct evidence underpinning these hypotheses is lacking. Here, we show how the brain predictively refines neural resources to process afferent cardiac feedback and uses these interoceptive cues to enable more efficient processing of external sensory information. Participants completed a repetition-suppression paradigm consisting of a neutral repeating face. During the first face presentation, they heard auditory feedback of their heartbeat which either coincided with the systole of the cardiac cycle, the time at which cardiac events are registered by the brain or the diastole during which the brain receives no internal cardiac feedback. We used electroencephalography to measure the heartbeat evoked potential (HEP) as well as auditory (AEP) and visual evoked potentials (VEP). Exteroceptive cardiac feedback which coincided with the systole produced significantly higher HEP amplitudes relative to feedback timed to the diastole. Elevation of the HEP in this condition was followed by significant suppression of the VEP in response to the repeated neutral face and a stepwise decrease of AEP amplitude to repeated heartbeat feedback. Our results hereby show that exteroceptive heartbeat feedback coinciding with interoceptive signals at systole enhanced interoceptive cardiac processing. Furthermore, the same cue facilitating interoceptive integration enabled efficient suppression of a visual stimulus, as well as repetition suppression of the AEP across successive auditory heartbeat feedback. Our findings provide evidence that the alignment of external to internal signals can enhance the efficiency of interoceptive processing and that cues facilitating this process in either domain have beneficial effects for internal as well as external sensory processing

    The effects of long-term stress exposure on aging cognition: a behavioral and EEG investigation

    Get PDF
    A large field of research seeks to explore and understand the factors that may cause different rates of age-related cognitive decline within the general population. However, the impact of experienced stress on the human aging process has remained an under-researched possibility. This study explored the association between cumulative stressful experiences and cognitive aging, addressing whether higher levels of experienced stress correlate with impaired performance on 2 working memory tasks. Behavioral performance was paired with electroencephalographic recordings to enable insight into the underlying neural processes impacted on by cumulative stress. Thus, the electroencephalogram was recorded while both young and elderly performed 2 different working memory tasks (a Sternberg and N-back paradigm), and cortical oscillatory activity in the theta, alpha, and gamma bandwidths was measured. Behavioral data indicated that a higher stress score among elderly participants related to impaired performance on both tasks. Electrophysiological findings revealed a reduction in alpha and gamma event-related synchronization among high-stress-group elderly participants, indicating that higher levels of experienced stress may impact on their ability to actively maintain a stimulus in working memory and inhibit extraneous information interfering with successful maintenance. Findings provide evidence that cumulative experienced stress adversely affects cognitive aging

    Exteroceptive expectations modulate interoceptive processing: repetition-suppression effects for visual and heartbeat evoked potentials

    Get PDF
    Interoception refers to the signaling of internal bodily commands. Here, we explore repetition suppression of intero- and exteroceptive neural markers to test whether the perception and predictability of exteroceptive stimulus material affects their expression. Participants completed a repetition suppression paradigm in which angry or neutral facial expressions repeated or alternated. Participants received either an implicit (experiment 1) or explicit (experiment 2) cue enabling the formation of expectations regarding the upcoming facial expression. We measured the heartbeat-evoked potential (HEP) indexing cardiac processing and visual evoked potentials (VEP) in response to viewing the second (repeated or alternated) face. Repeating angry facial expressions produced repetition suppression of both HEP and VEP amplitude while repeating neutral expressions led to repetition enhancement of HEP amplitude. This effect was magnified when participants were explicitly aware of predictive cues. Furthermore, repetition suppression of HEP amplitude correlated with neural attenuation of VEP activity. Results highlight repetition effects for interoceptive as well as exteroceptive neural markers and support top-down, expectation-based accounts of the phenomenon. Furthermore, results demonstrate that the perception of exteroceptive stimulus information has an effect on the processing of interoceptive signals and suggest a direct neural connection between the processing of external and internal sensory information

    The association between high levels of cumulative life stress and aberrant resting state EEG dynamics in old age

    Get PDF
    Cumulative experienced stress produces shortcomings in old adults’ cognitive performance. These are reflected in electrophysiological changes tied to task execution. This study explored whether stress-related aberrations in older adults’ electroencephalographic (EEG) activity were also apparent in the system at rest. To this effect, the amount of stressful life events experienced by 60 young and 60 elderly participants were assessed in conjunction with resting state power changes in the delta, theta, alpha, and beta frequencies during a resting EEG recording. Findings revealed elevated levels of delta power among elderly individuals reporting high levels of cumulative life stress. These differed significantly from young high and low stress individuals and old adults with low levels of stress. Increases of delta activity have been linked to the emergence of conditions such as Alzheimer’s Disease and Mild Cognitive Impairment. Thus, a potential interpretation of our findings associates large amounts of cumulative stress with an increased risk of developing age-related cognitive pathologies in later life

    The Interaction between Interoceptive and Action States within a Framework of Predictive Coding

    Get PDF
    The notion of predictive coding assumes that perception is an iterative process between prior knowledge and sensory feedback. To date, this perspective has been primarily applied to exteroceptive perception as well as action and its associated phenomenological experiences such as agency. More recently, this predictive, inferential framework has been theoretically extended to interoception. This idea postulates that subjective feeling states are generated by top-down inferences made about internal and external causes of interoceptive afferents. While the processing of motor signals for action control and the emergence of selfhood have been studied extensively, the contributions of interoceptive input and especially the potential interaction of motor and interoceptive signals remain largely unaddressed. Here, we argue for a specific functional relation between motor and interoceptive awareness. Specifically, we implicate interoceptive predictions in the generation of subjective motor-related feeling states. Furthermore, we propose a distinction between reflexive and pre-reflexive modes of agentic action control and suggest that interoceptive input may affect each differently. Finally, we advocate the necessity of continuous interoceptive input for conscious forms of agentic action control. We conclude by discussing further research contributions that would allow for a fuller understanding of the interaction between agency and interoceptive awareness

    Stress-related deficits of older adults' spatial working memory: An EEG investigation of occipital alpha and frontal-midline theta activity

    Get PDF
    Studies highlight cumulative life stress as a significant predictor of accelerated cognitive aging. This study paired electrophysiological with behavioral measures to explore how cumulative stress affects attentional and maintenance processes underpinning working memory retention. We collected electroencephalographic recordings from 60 individuals (30 older, 30 younger) reporting high or low levels of cumulative stress during the performance of a spatial Sternberg task. We measured mid-occipital alpha (8–12 Hz) and frontal-midline theta (4–6 Hz) as indicators of attentional and maintenance processes. Older, high-stress participants' behavioral performance lay significantly below than that of younger adults and low-stress older individuals. Impaired task performance coincided with reduced event-related synchronization in alpha and theta frequency ranges during memory maintenance. Electrophysiological findings suggest that older adults' reduced performance results from a stress-related impact on their ability to retain a stimulus in working memory and inhibit extraneous information from interfering with maintenance. Our results demonstrate the wide-ranging impact of cumulative stress on cognitive health and provide insight into the functional mechanisms disrupted by its influence

    Cardiac interoceptive learning is modulated by emotional valence perceived from facial expressions

    Get PDF
    Interoception refers to the processing of homeostatic bodily signals. Research demonstrates that interoceptive markers can be modulated via exteroceptive stimuli and suggests that the emotional content of this information may produce distinct interoceptive outcomes. Here, we explored the impact of differently valenced exteroceptive information on the processing of interoceptive signals. Participants completed a repetition-suppression paradigm viewing repeating or alternating faces. In experiment 1, faces wore either angry or pained expressions to explore the interoceptive response to different types of negative stimuli in the observer. In experiment 2, expressions were happy or sad to compare interoceptive processing of positive and negative information. We measured the heartbeat evoked potential (HEP) and visual evoked potentials (VEPs) as a respective marker of intero- and exteroceptive processing. We observed increased HEP amplitude to repeated sad and pained faces coupled with reduced HEP and VEP amplitude to repeated angry faces. No effects were observed for positive faces. However, we found a significant correlation between suppression of the HEP and VEP to repeating angry faces. Results highlight an effect of emotional expression on interoception and suggest an attentional trade-off between internal and external processing domains as a potential account of this phenomenon

    The uses and gratifications of using Facebook music listening applications

    Get PDF
    Despite rapid adoption of social media as a means of music listening, little is known about users’ motivations. This study applies the uses and gratifications approach to users’ motivations for using music listening applications on Facebook. Participants completed an online survey, and 153 out of 576 respondents indicated that they used a Facebook music listening application. A principal axis factor analysis identified three different motivations for this usage, namely entertainment, communication, and habitual diversion gratifications. The entertainment and communication gratifications replicate those found in prior uses and gratifications research concerning other social networking features, illustrating the strong similarity between uses of music and social media. However, the habitual diversion gratification may serve to distinguish listening applications from other features. Identifying and explaining these factors is relevant to social media users, musicians and application designers, as they explain what motivates a means of music listening that is gaining prominence
    • …
    corecore