4,348 research outputs found

    NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    Get PDF
    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented

    The Impact of Differential Cost Sharing of Non-Steroidal Anti-Inflammatory Agents on the Use and Costs of Analgesic Drugs

    Get PDF
    OBJECTIVE: To estimate the effect of differential cost sharing (DCS) schemes for non-steroidal anti-inflammatory drugs (NSAIDs) on drug subsidy program and beneficiary expenditures. DATA SOURCES/STUDY SETTING: Monthly aggregate claims data from Pharmacare, the public drug subsidy program for seniors in British Columbia, Canada over the period 1989-11 to 2001-06. STUDY DESIGN: DCS limits insurance reimbursement of a group of therapeutically similar drugs to the cost of the lowest priced drugs, with beneficiaries responsible for costs above the reimbursement limit. Pharmacare introduced two different forms of DCS, generic substitution (GS) and reference pricing (RP), in April 1994 and November 1995, respectively, to the NSAIDs. Under GS, generic and brand versions of the same NSAID are considered interchangeable, whereas under RP different NSAIDs are. We extrapolated average reimbursement per day of NSAID therapy over the months before GS and RP to estimate what expenditures would have been without the policies. These counterfactual predictions were compared to actual values to estimate the impact of the policies; the estimated impacts on reimbursement rates were multiplied by the post-policy volume of NSAIDS dispensed, which appeared unaffected by the policies, to estimate expenditure changes. DATA COLLECTION: The cleaned NSAID claims data, obtained from Pharmacare’s databases, were aggregated by month and by their reimbursement status under the GS and RP policies. PRINCIPAL FINDINGS: After RP, program expenditures declined by 22.7million,or22.7 million, or 4 million annually, cutting expenditure by half. Most savings accrued from the substitution of low cost NSAIDs for more costly alternatives. About 20% of savings represented expenditures by seniors who elected to pay for partially-reimbursed drugs. GS produced one quarter the savings of RP. CONCLUSIONS: RP of NSAIDs achieved its goal of reducing drug expenditures and was more effective than GS. The effects of RP on patient health and associated health care costs remain to be investigated.Reference pricing; generic substitution; prescription drugs; drug cost containment; NSAIDs.

    Effects of Prior Fasting on Fat Oxidation during Resistance Exercise

    Get PDF
    International Journal of Exercise Science 11(2): 827-833, 2018. Prior research has demonstrated that the percentage of fuel utilization contributed by CHO compared to fat rises with an increase in exercise intensity. The role of food intake prior to exercise has been well studied and fasting prior to exercise generally increases reliance on fat as fuel. However, data on the role of fasting prior to resistance exercise is limited. Therefore, the purpose of this study was to assess the effects of one bout of resistance training in a fasted state compared to ingestion of standardized meal on fat and carbohydrate utilization. Twelve female (n = 12, age = 20.1 ± 0.79 yrs, height = 67.0 ± 2.63 in, weight = 143 ± 21.8 lbs) NCAA Division 1 athletes participated in the study. Each participant completed one 10 hour fasted resistance training session and one postprandial resistance training session. The respiratory exchange ratio (RER) and METs were measured using a Cosmed K4b2portable metabolic cart (Cosmed, Rome, Italy) and heart rate was measured by a Polar H1 heart rate monitor. Participants consumed the prescribed food, waited 15 minutes, and then completed three sets of five repetitions of bench press, back squat, and military press at 60% of their 1-repetition maximum. The mean fasted RER was significantly lower than postprandial for back squat (p=0.01) and military press (p=0.02), but not bench press (p=0.19). There was no difference in METs, RPE, or HR between fasted and postprandial trials for any exercise. Results suggest that fasted resistance exercise relies more heavily on fat metabolism than carbohydrate

    Chandra and RXTE Spectra of the Burster GS 1826-238

    Full text link
    Using simultaneous observations from Chandra and RXTE, we investigated the LMXB GS 1826-238 with the goal of studying its spectral and timing properties. The uninterrupted Chandra observation captured 6 bursts (RXTE saw 3 of the 6), yielding a recurrence time of 3.54 +/- 0.03 hr. Using the proportional counter array on board RXTE, we made a probable detection of 611 Hz burst oscillations in the decaying phases of the bursts with an average rms signal amplitude of 4.8%. The integrated persistent emission spectrum can be described as the dual Comptonization of ~ 0.3 keV soft photons by a plasma with kT_e ~ 20 keV and an optical depth of about 2.6 (interpreted as emission from the accretion disk corona), plus the Comptonization of hotter ~ 0.8 keV seed photons by a ~ 6.8 keV plasma (interpreted as emission from or near the boundary layer). We discovered evidence for a neutral Fe K\alpha emission line, and we found interstellar Fe L_II and Fe L_III absorption features. The burst spectrum can be fit by fixing the disk Comptonization parameters to the persistent emission best-fit values, and adding a blackbody. The blackbody/seed photon temperature at the peak of the burst is ~ 1.8 keV and returns to ~ 0.8 keV over 200 s. The blackbody radius is consistent with R_bb = 10.3-11.7 km assuming a distance of 6 kpc; however, by accounting for the fraction of the surface that is obscured by the disk as a function of binary inclination, we determined the source distance must actually be near 5 kpc in order for the stellar radius to lie within the commonly assumed range of 10-12 km.Comment: Accepted for publication in ApJ; 13 pages, 6 figure

    Markov Chain Monte Carlo joint analysis of Chandra X-ray imaging spectroscopy and Sunyaev-Zeldovich Effect data

    Full text link
    X-ray and Sunyaev-Zeldovich Effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and Sunyaev-Zeldovich Effect data were obtained from the BIMA and OVRO arrays. We introduce a Markov chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in follow-up papers to determine the distances to a large sample of galaxy clusters.Comment: ApJ accepted, scheduled for ApJ 10 October 2004, v614 issue. Title changed, added more convergence diagnostic tests, Figure 7 converted to lower resolution for easier download, other minor change

    Determination of the Cosmic Distance Scale from Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements of High Redshift Galaxy Clusters

    Full text link
    We determine the distance to 38 clusters of galaxies in the redshift range 0.14 < z < 0.89 using X-ray data from Chandra and Sunyaev-Zeldovich Effect data from the Owens Valley Radio Observatory and the Berkeley-Illinois-Maryland Association interferometric arrays. The cluster plasma and dark matter distributions are analyzed using a hydrostatic equilibrium model that accounts for radial variations in density, temperature and abundance, and the statistical and systematic errors of this method are quantified. The analysis is performed via a Markov chain Monte Carlo technique that provides simultaneous estimation of all model parameters. We measure a Hubble constant of 76.9 +3.9-3.4 +10.0-8.0 km/s/Mpc (statistical followed by systematic uncertainty at 68% confidence) for an Omega_M=0.3, Omega_Lambda=0.7 cosmology. We also analyze the data using an isothermal beta model that does not invoke the hydrostatic equilibrium assumption, and find H_0=73.7 +4.6-3.8 +9.5-7.6 km/s/Mpc; to avoid effects from cool cores in clusters, we repeated this analysis excluding the central 100 kpc from the X-ray data, and find H_0=77.6 +4.8-4.3 +10.1-8.2 km/s/Mpc. The consistency between the models illustrates the relative insensitivity of SZE/X-ray determinations of H_0 to the details of the cluster model. Our determination of the Hubble parameter in the distant universe agrees with the recent measurement from the Hubble Space Telescope key project that probes the nearby universe.Comment: ApJ submitted (revised version

    Comparison of Ultrastructural Cytotoxic Effects of Carbon and Carbon/Iron Particulates on Human Monocyte-Derived Macrophages

    Get PDF
    In this study, we tested the hypothesis that the presence of iron in carbon particulates enhances ultrastructural perturbation in human monocyte-derived macrophages (MDMs) after phagocytosis. We used 1-μm synthetic carbon-based particulates, designed to simulate environmental particulates of mass median aerodynamic diameter ≤ 2.5 μm (PM(2.5)). Cultures of human MDMs or T-lymphocytes (as a nonphagocytic control) were exposed to carbon or carbon/iron particulates for various time periods and examined by transmission electron microscopy for ultrastructural changes. T-cells failed to internalize either of the particulates and showed no organelle or nuclear changes. Conversely, MDMs avidly phagocytized the particulates. MDMs treated with C particulates exhibited morphologic evidence of macrophage activation but no evidence of lysis of organelles. In contrast, MDMs treated with C/Fe particulates exhibited coalescence of particulate-containing lysosomes. This phenomenon was not observed in the case of C particulates. By 24 hr there was a tendency of the C/Fe particulates to agglomerate into loose or compact clusters. Surrounding the compact C/Fe agglomerates was a uniform zone of nearly total organelle lysis. The lytic changes diminished in proportion to the distance from the agglomerate. In such cells, the nucleus showed loss of chromatin. Although C particles induced no detectable oxidative burst on treated MDMs, C/Fe particles induced a nearly 5-fold increase in the extracellular oxidative burst by treated MDMs compared with untreated controls. Iron bound to C particles catalyzed the decomposition of hydrogen peroxide to generate hydroxyl radicals. Results of these studies suggest that, among particulates of similar size, biologic activity can vary profoundly as a function of particulate physicochemical properties
    • …
    corecore