21 research outputs found

    Dominance of photo over chromatic acclimation strategies by habitat-forming mesophotic red algae

    Get PDF
    Funding was provided by a Leverhulme Trust Research Project grant no. (RPG-2018-113) to H.L.B., G.A.T. and I.D.W.S., an Engineering and Physical Sciences Research Council grant (EP/L017008/1) to G.A.T. and I.D.W.S., and a São Paulo Research Foundation (FAPESP) individual grant (#2016/14017-0) to G.H.P.-F.Red coralline algae are the deepest living macroalgae, capable of creating spatially complex reefs from the intertidal to 100+ m depth with global ecological and biogeochemical significance. How these algae maintain photosynthetic function under increasingly limiting light intensity and spectral availability is key to explaining their large depth distribution. Here, we investigated the photo- and chromatic acclimation and morphological change of free-living red coralline algae towards mesophotic depths in the Fernando do Noronha archipelago, Brazil. From 13 to 86 m depth, thalli tended to become smaller and less complex. We observed a dominance of the photo-acclimatory response, characterized by an increase in photosynthetic efficiency and a decrease in maximum electron transport rate. Chromatic acclimation was generally stable across the euphotic-mesophotic transition with no clear depth trend. Taxonomic comparisons suggest these photosynthetic strategies are conserved to at least the Order level. Light saturation necessitated the use of photoprotection to 65 m depth, while optimal light levels were met at 86 m. Changes to the light environment (e.g. reduced water clarity) due to human activities therefore places these mesophotic algae at risk of light limitation, necessitating the importance of maintaining good water quality for the conservation and protection of mesophotic habitats.Publisher PDFPeer reviewe

    Ecosystem engineer morphological traits and taxon identity shape biodiversity across the euphotic-mesophotic transition

    Get PDF
    Funding was provided by a Leverhulme Trust Research Project grant (no. RPG-2018-113) to H.L.B., G.A.T. and I.D.W.S., an Engineering and Physical Sciences Research Council grant (no. EP/L017008/1) to G.A.T. and I.D.W.S., and a São Paulo Research Foundation (FAPESP) individual grant (no. 2016/14017-0) to G.H.P.F.The euphotic-mesophotic transition is characterized by dramatic changes in environmental conditions, which can significantly alter the functioning of ecosystem engineers and the structure of their associated communities. However, the drivers of biodiversity change across the euphotic-mesophotic transition remain unclear. Here, we investigated the mechanisms affecting the biodiversity-supporting potential of free-living red coralline algae-globally important habitat creators-towards mesophotic depths. Across a 73 m depth gradient, we observed a general decline in macrofaunal biodiversity (fauna abundance, taxon richness and alpha diversity), but an increase in beta-diversity (i.e. variation between assemblages) at the deepest site (86 m depth, where light levels were less than 1% surface irradiance). We identified a gradient in abundance decline rather than distinct ecological shifts, driven by a complex interaction between declining light availability, declining size of the coralline algal host individuals and a changing host taxonomy. However, despite abundance declines, high between-assemblage variability at deeper depths allowed biodiversity-supporting potential to be maintained, highlighting their importance as coastal refugia.PostprintPeer reviewe

    Dominance of photo over chromatic acclimation strategies by habitat-forming mesophotic red algae

    No full text
    Red coralline algae are the deepest living macroalgae, capable of creating spatially complex reefs from the intertidal to 100+ m depth with global ecological and biogeochemical significance. How these algae maintain photosynthetic function under increasingly limiting light intensity and spectral availability is key to explaining their large depth distribution. Here, we investigated the photo- and chromatic acclimation and morphological change of free-living red coralline algae towards mesophotic depths in the Fernando do Noronha archipelago, Brazil. From 13 to 86 m depth, thalli tended to become smaller and less complex. We observed a dominance of the photo-acclimatory response, characterized by an increase in photosynthetic efficiency and a decrease in maximum electron transport rate. Chromatic acclimation was generally stable across the euphotic-mesophotic transition with no clear depth trend. Taxonomic comparisons suggest these photosynthetic strategies are conserved to at least the Order level. Light saturation necessitated the use of photoprotection to 65 m depth, while optimal light levels were met at 86 m. Changes to the light environment (e.g. reduced water clarity) due to human activities therefore places these mesophotic algae at risk of light limitation, necessitating the importance of maintaining good water quality for the conservation and protection of mesophotic habitats

    Ecosystem engineer morphological traits and taxon identity shape biodiversity across the euphotic-mesophotic transition

    No full text
    The euphotic-mesophotic transition is characterized by dramatic changes in environmental conditions, which can significantly alter the functioning of ecosystem engineers and the structure of their associated communities. However, the drivers of biodiversity change across the euphotic-mesophotic transition remain unclear. Here, we investigated the mechanisms affecting the biodiversity-supporting potential of free-living red coralline algae-globally important habitat creators-towards mesophotic depths. Across a 73 m depth gradient, we observed a general decline in macrofaunal biodiversity (fauna abundance, taxon richness and alpha diversity), but an increase in beta-diversity (i.e. variation between assemblages) at the deepest site (86 m depth, where light levels were less than 1% surface irradiance). We identified a gradient in abundance decline rather than distinct ecological shifts, driven by a complex interaction between declining light availability, declining size of the coralline algal host individuals and a changing host taxonomy. However, despite abundance declines, high between-assemblage variability at deeper depths allowed biodiversity-supporting potential to be maintained, highlighting their importance as coastal refugia.</p

    Supplementary material from "Ecosystem engineer morphological traits and taxon identity shape biodiversity across the euphotic–mesophotic transition"

    No full text
    The euphotic–mesophotic transition is characterized by dramatic changes in environmental conditions, which can significantly alter the functioning of ecosystem engineers and the structure of their associated communities. However, the drivers of biodiversity change across the euphotic–mesophotic transition remain unclear. Here, we investigated the mechanisms affecting the biodiversity-supporting potential of free-living red coralline algae—globally important habitat creators—towards mesophotic depths. Across a 73 m depth gradient, we observed a general decline in macrofaunal biodiversity (fauna abundance, taxon richness and alpha diversity), but an increase in beta-diversity (i.e. variation between assemblages) at the deepest site (86 m depth, where light levels were less than 1% surface irradiance). We identified a gradient in abundance decline rather than distinct ecological shifts, driven by a complex interaction between declining light availability, declining size of the coralline algal host individuals and a changing host taxonomy. However, despite abundance declines, high between-assemblage variability at deeper depths allowed biodiversity-supporting potential to be maintained, highlighting their importance as coastal refugia

    Search for millicharged particles in proton-proton collisions at s=13\sqrt{s} = 13 TeV

    Get PDF
    We report on a search for elementary particles with charges much smaller than the electron charge (e) using a data sample of proton-proton collisions provided by the CERN Large Hadron Collider in 2018, corresponding to an integrated luminosity of 37.5/fb at a center-of-mass energy of 13 TeV. A prototype scintillator-based detector is deployed to conduct the first search at a hadron collider sensitive to particles with charges ≤ 0.1e. The existence of new particles with masses between 20 and 4700 MeV is excluded at 95% confidence level for charges between 0.006e and 0.3e, depending on their mass. New sensitivity is achieved for masses larger than 700 MeV.We report on a search for elementary particles with charges much smaller than the electron charge using a data sample of proton-proton collisions provided by the CERN Large Hadron Collider in 2018, corresponding to an integrated luminosity of 37.5  fb-1 at a center-of-mass energy of 13 TeV. A prototype scintillator-based detector is deployed to conduct the first search at a hadron collider sensitive to particles with charges ≤0.1e. The existence of new particles with masses between 20 and 4700 MeV is excluded at 95% confidence level for charges between 0.006e and 0.3e, depending on their mass. New sensitivity is achieved for masses larger than 700 MeV.We report on a search for elementary particles with charges much smaller than the electron charge using a data sample of proton-proton collisions provided by the CERN Large Hadron Collider in 2018, corresponding to an integrated luminosity of 37.5 fb−1^{-1} at a center-of-mass energy of 13 TeV. A prototype scintillator-based detector is deployed to conduct the first search at a hadron collider sensitive to particles with charges ≤0.1e{\leq}0.1e. The existence of new particles with masses between 20 and 4700 MeV is excluded at 95% confidence level for charges between 0.006e0.006e and 0.3e0.3e, depending on their mass. New sensitivity is achieved for masses larger than 700700 MeV
    corecore