11 research outputs found
Inhibition of Mammary Gland Cancer Development by Propolis and Mangostin in Female Mice Balb/C
The development of breast cancer involves many processes, including angiogenesis and metastasis. Some factors play a major role in angiogenesis, such as HIF-1α, and in metastasis, such as FAK and Wnt2. The aim of this study was to observe the effect of propolis and mangostin on the development of mammary gland cancer and on the expression of Wnt2 and FAK in Balb/C mice. Mammary gland tumors were induced in Balb/C mice by DMBA. The mice were divided into 5 treatment groups: negative control (K"‘); positive control treated with doxorubicin (14.04 mg/kg bw) (Dx); mice treated with propolis (0.32 mg/kg bw) (P) or mangostin (0.128 mg/kg bw) (M); and mice treated with a combination of propolis (0.32 mg/kg bw) and mangostin (0.128 mg/kg bw) (MP). Both mangostin and propolis did not affect the body weight of the mice. Treatment with propolis or treatment with propolis combined with mangostin was able to reduce tumor development activity in Balb/C mice. Moreover, the combination of mangostin and propolis was able to lower Wnt2, FAK and HIF-1α expression. It can be concluded that the combination of propolis and mangostin has potential to inhibit cancer development through downregulation of Wnt2, FAK, and HIF1α expression
Role of Hypoxia on Growth and Differentiation of Human Adipose Derived Stem Cells Grown on Silk Fibroin Scaffold Induced by Platelet Rich Plasma
Previous research has proven that 10% platelet-rich plasma (PRP) can enhance growth and differentiation of human adipose derived stem cells (hADSC) grown on silk fibroin scaffold into chondrocytes. A low oxygen concentration (hypoxia) condition is an important factor that potentially affects the ability of hADSC to grow and differentiate. The objective of this research was to analyze the difference in growth and differentiation capacity of hADSC grown on salt leached silk fibroin scaffold supplemented by 10% PRP under normoxic and hypoxic conditions. The growth capacity of the hADSC was determined by MTT assay and differentiation was tested using glycosaminoglycan (GAG) content analysis, while chondrocyte markers were visualized with the immunocytochemistry (ICC) method. This research observed hADSC proliferation under normoxic and hypoxic conditions for 21 days. Visualization of type 2 collagen showed that it was more abundant under hypoxia compared to normoxia. HIF-1α was only detected in the hADSC cultured in hypoxic conditions. In conclusion, culture under hypoxic conditions increases the capacity of hADSC to grow and differentiate into chondrocytes. This is the first study that has shown that hypoxia is able to enhance the proliferation and differentiation of hADSC grown on 3D salt leached silk fibroin scaffold supplemented by 10% PRP
Synthesis of Human Antibodies Against HBsAg in Newly Established Chinese Hamster Lung (CHL-YN) Cell Line
Hepatitis B immunoglobulin (HBIG) is an effective treatment for hepatitis B, including postexposure prophylaxis of HBV infection, prevention of HBV reinfection in liver transplant patients, and reducing sexual transmission. This study investigated the synthesis of human IgG antibodies that specifically target HBsAg subtype adr in CHL-YN cells, a newly established cell line that grows faster than CHO-K1. To achieve the synthesis of human IgG antibodies, a plasmid vector encoding DNA sequences for human IgG antibodies against HBsAg was constructed and then transiently transfected into CHL-YN cells. The expression and antigen-binding capacity of the recombinant human IgG antibodies were analyzed using western blot and ELISA. The results showed successful expression and secretion of human IgG antibodies that recognize HBsAg subtype adr in CHL-YN cells. The ELISA test confirmed the specificity of the human IgG antibodies towards HBsAg subtype adr. Thus, this study concluded that human IgG antibodies that target HBsAg subtype adr were transiently expressed in CHL-YN cells
Synthesis of Human Antibodies Against HBsAg in Newly Established Chinese Hamster Lung (CHL-YN) Cell Line
Hepatitis B immunoglobulin (HBIG) is an effective treatment for hepatitis B, including postexposure prophylaxis of HBV infection, prevention of HBV reinfection in liver transplant patients, and reducing sexual transmission. This study investigated the synthesis of human IgG antibodies that specifically target HBsAg subtype adr in CHL-YN cells, a newly established cell line that grows faster than CHO-K1. To achieve the synthesis of human IgG antibodies, a plasmid vector encoding DNA sequences for human IgG antibodies against HBsAg was constructed and then transiently transfected into CHL-YN cells. The expression and antigen-binding capacity of the recombinant human IgG antibodies were analyzed using western blot and ELISA. The results showed successful expression and secretion of human IgG antibodies that recognize HBsAg subtype adr in CHL-YN cells. The ELISA test confirmed the specificity of the human IgG antibodies towards HBsAg subtype adr. Thus, this study concluded that human IgG antibodies that target HBsAg subtype adr were transiently expressed in CHL-YN cells
Improvement of Plasmid Volumetric Yield by Addition of Glycerol and Phosphate Buffer in Escherichia coli TOP10 Batch Culture
The investigation of mRNA development has gained substantial interest, particularly in the ex vivo and in vivo therapy. mRNA is widely used for the development of gene editing-based therapies and mRNA vaccines. The aim of this study was to optimize the medium and harvest time to increase plasmid DNA production as part of mRNA production. This study modified used a medium modification approach to achieve high density culture of Escherichia coli TOP10 pGEMT-N in batch cultivation method. Various media formulations were assessed, including LB; LB with phosphate buffer (K2HPO4 12.549 g/L and KH2PO4 2.31 g/L); LB with glycerol (50 g/L); LB with glycerol and phosphate buffer; LB with phosphate buffer, glycerol, glucose (15 g/L), and galactose (15 g/L). The effect of additional carbon sources and phosphate buffer on culture density was measured through OD600 and wet cell weight analysis. The highest OD600 and wet cell weight was observed when LB with glycerol and phosphate buffer was used, with OD600 of 4.78±0.14 and wet cell weight of 36.00±0.63 mg/ml. Plasmid DNA was subsequently isolated from these cultures following 5- and 7.5-hour incubation periods. The utilization of LB medium with glycerol and phosphate buffer resulted in a substantial increase in the volumetric concentration of plasmid DNA of 1,516.97±385.00 ng/ml after 5 hours of incubation. In conclusion, a remarkable enhancement in plasmid DNA volumetric yield within 5 hours was achieved by addition of glycerol and phosphate buffer to LB medium, leading to incubation period
Potential Cell-Based and Cell-Free Therapy for Patients with COVID-19
Since it was first reported, the novel coronavirus disease 2019 (COVID-19) remains an unresolved puzzle for biomedical researchers in different fields. Various treatments, drugs, and interventions were explored as treatments for COVID. Nevertheless, there are no standard and effective therapeutic measures. Meanwhile, mesenchymal stem cell (MSC) therapy offers a new approach with minimal side effects. MSCs and MSC-based products possess several biological properties that potentially alleviate COVID-19 symptoms. Generally, there are three classifications of stem cell therapy: cell-based therapy, tissue engineering, and cell-free therapy. This review discusses the MSC-based and cell-free therapies for patients with COVID-19, their potential mechanisms of action, and clinical trials related to these therapies. Cell-based therapies involve the direct use and injection of MSCs into the target tissue or organ. On the other hand, cell-free therapy uses secreted products from cells as the primary material. Cell-free therapy materials can comprise cell secretomes and extracellular vesicles. Each therapeutic approach possesses different benefits and various risks. A better understanding of MSC-based and cell-free therapies is essential for supporting the development of safe and effective COVID-19 therapy
Inhibition of Mammary Gland Cancer Development by Propolis and Mangostin in Female Mice Balb/C
The development of breast cancer involves many processes, including angiogenesis and metastasis. Some factors play a major role in angiogenesis, such as HIF-1α, and in metastasis, such as FAK and Wnt2. The aim of this study was to observe the effect of propolis and mangostin on the development of mammary gland cancer and on the expression of Wnt2 and FAK in Balb/C mice. Mammary gland tumors were induced in Balb/C mice by DMBA. The mice were divided into 5 treatment groups: negative control (K"‘); positive control treated with doxorubicin (14.04 mg/kg bw) (Dx); mice treated with propolis (0.32 mg/kg bw) (P) or mangostin (0.128 mg/kg bw) (M); and mice treated with a combination of propolis (0.32 mg/kg bw) and mangostin (0.128 mg/kg bw) (MP). Both mangostin and propolis did not affect the body weight of the mice. Treatment with propolis or treatment with propolis combined with mangostin was able to reduce tumor development activity in Balb/C mice. Moreover, the combination of mangostin and propolis was able to lower Wnt2, FAK and HIF-1α expression. It can be concluded that the combination of propolis and mangostin has potential to inhibit cancer development through downregulation of Wnt2, FAK, and HIF1α expression
In Silico Study, Design, and Expression of an Intranasal Dual Chimeric Vaccine for Indonesian-Based Norovirus GII-2 and Hepatitis B
Hepatitis B virus (HBV) remains an important healthcare challenge, leading to liver diseases like cirrhosis and cancer. In response, we created a prophylactic and therapeutic HBV vaccine by integrating HBcAg and HBsAg from HBV genotype B into Norovirus (NoV) GII.2 P domain (PdomGII.2-HBV) for enhanced intranasal delivery. This vaccine also aimed to simultaneously prevent NoV infection, which causes gastroenteritis. Since the selected HBV epitopes have undergone extensive research and are tailored to the Indonesian population, this study focused on identifying NoV epitopes and assessing T cell epitopes coverage of the PdomGII.2-HBV for the Indonesian population. Following that, we expressed the PdomGII.2-HBV protein using Escherichia coli BL21(DE3) and employed a gentle solubilization technique for protein purification. Our in-silico analysis identified two B cell epitopes, along with 15 CD4+T cell epitopes and 35 CD8+T cell epitopes within the GII.2 P domain. These T cell epitopes cover 100% of the Javanese-Sundanese population's HLA allele variations, which constituted the largest demographic group in Indonesia. Subsequently, we successfully purified the presumed PdomGII.2-HBV protein, revealing a molecular weight of 39.5 kDa. Following the successful expression and purification of the presumed PdomGII.2-HBV protein, it is evident that this vaccine design has significant potential, warranting further study
SARS-CoV-2 Neutralization Assay System using Pseudo-lentivirus
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects humans' lower respiratory tracts and causes coronavirus disease-2019 (COVID-19). Neutralizing antibodies is one of the adaptive immune system responses that can reduce SARS-CoV-2 infection. This study aimed to develop a SARS-CoV-2 neutralization assay system using pseudo-lentivirus.METHODS: The plasmid used for pseudo-lentivirus production was characterized using restriction analysis. The gene encoding for SARS-CoV-2 spike protein was confirmed using sequencing. The transfection pseudo-lentivirus optimal condition was determined by choosing the transfection reagents and adding centrifugation step. Optimal pseudo-lentivirus infection was analysed using fluorescent assay and luciferase assay. The optimal condition of pseudo-lentivirus infection was determined by the target cell type and the number of pseudo-lentiviruses used for neutralization test. SARS-CoV-2 pseudo-lentivirus was used to detect neutralizing antibodies from serum samples.RESULTS: The plasmid used for pseudo-lentivirus production was characterized and confirmed to have no mutations. Lipofectamine 2000 reagent generated pseudo-lentivirus with a higher ability to infect target cells, as indicated by a percentage green fluorescent protein (GFP) of 12.68%. Pseudo-lentivirus centrifuged obtained more stable results in luciferase expression. Optimal pseudo-lentivirus infection conditions were obtained using puromycin-selected HEK 293T-ACE2 cells as target cells. The number of pseudo-lentiviruses used in the neutralization assay system was multiplicity of infection (MOI) 0.075. Serum A samples with a 1:10 dilution had the highest neutralizing antibody activity.CONCLUSION: This study shows that SARS-CoV-2 neutralization assay system using pseudo-lentivirus successfully detected neutralizing antibodies in human serum, which were indicated by a decrease in the percentage of pseudo-lentivirus infections.KEYWORDS:Â COVID-19, neutralizing antibody, neutralization assay, pseudo-lentivirus, SARS-COV-