6,851 research outputs found

    Some basic properties of infinite dimensional Hamiltonian systems

    Get PDF
    We consider some fundamental properties of infinite dimensional Hamiltonian systems, both linear and nonlinear. For exemple, in the case of linear systems, we prove a symplectic version of the teorem of M. Stone. In the general case we establish conservation of energy and the moment function for system with symmetry. (The moment function was introduced by B. Kostant and J .M. Souriau). For infinite dimensional systems these conservation laws are more delicate than those for finite dimensional systems because we are dealing with partial as opposed to ordinary differential equations

    On uniformly rotating fluid drops trapped between two parallel plates

    Get PDF
    This contribution is about the dynamics of a liquid bridge between two fixed parallel plates. We consider a mathematical model and present some results from the doctoral thesis [10] of the first author. He showed that there is a Poisson bracket and a corresponding Hamiltonian, so that the model equations are in Hamiltonian form. The result generalizes previous results of Lewis et al. on the dynamics of free boundary problems for "free" liquid drops to the case of a drop between two parallel plates, including, especially the effect of capillarity and the angle of contact between the plates and the free fluid surface. Also, we prove the existence of special solutions which represent uniformly rotating fluid ridges, and we present specific stability conditions for these solutions. These results extend work of Concus and Finn [2] and Vogel [18],[19] on static capillarity problems (see also Finn [5]). Using the Hamiltonian structure of the model equations and symmetries of the solutions, the stability conditions can be derived in a systematic way. The ideas that are described will be useful for other situations involving capillarity and free boundary problems as well

    Discrete Routh Reduction

    Get PDF
    This paper develops the theory of abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J2J_2 correction, as well as the double spherical pendulum. The J2J_2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a nontrivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the noncanonical nature of the symplectic structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added, fixed typo

    Hamiltonian approach to hybrid plasma models

    Full text link
    The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.Comment: 27 pages, no figures. To appear in J. Phys.

    Generalized poisson brackets and nonlinear Liapunov stability application to reduces mhd

    Get PDF
    A method is presented for obtaining Liapunov functionals (LF) and proving nonlinear stability. The method uses the generalized Poisson bracket (GPB) formulation of Hamiltonian dynamics. As an illustration, certain stationary solutions of ideal reduced MHD (RMHD) are shown to be nonlinearly stable. This includes Grad-Shafranov and Alfven solutions

    Point vortices on the sphere: a case with opposite vorticities

    Full text link
    We study systems formed of 2N point vortices on a sphere with N vortices of strength +1 and N vortices of strength -1. In this case, the Hamiltonian is conserved by the symmetry which exchanges the positive vortices with the negative vortices. We prove the existence of some fixed and relative equilibria, and then study their stability with the ``Energy Momentum Method''. Most of the results obtained are nonlinear stability results. To end, some bifurcations are described.Comment: 35 pages, 9 figure

    Dirac reduction revisited

    Full text link
    The procedure of Dirac reduction of Poisson operators on submanifolds is discussed within a particularly useful special realization of the general Marsden-Ratiu reduction procedure. The Dirac classification of constraints on 'first-class' constraints and 'second-class' constraints is reexamined.Comment: This is a revised version of an article published in J. Nonlinear Math. Phys. vol. 10, No. 4, (2003), 451-46

    Asymptotic Stability, Instability and Stabilization of Relative Equilibria

    Get PDF
    In this paper we analyze asymptotic stability, instability and stabilization for the relative equilibria, i.e. equilibria modulo a group action, of natural mechanical systems. The practical applications of these results are to rotating mechanical systems where the group is the rotation group. We use a modification of the Energy-Casimir and Energy-Momentum methods for Hamiltonian systems to analyze systems with dissipation. Our work couples the modern theory of block diagonalization to the classical work of Chetaev

    An Optimal Control Formulation for Inviscid Incompressible Ideal Fluid Flow

    Get PDF
    In this paper we consider the Hamiltonian formulation of the equations of incompressible ideal fluid flow from the point of view of optimal control theory. The equations are compared to the finite symmetric rigid body equations analyzed earlier by the authors. We discuss various aspects of the Hamiltonian structure of the Euler equations and show in particular that the optimal control approach leads to a standard formulation of the Euler equations -- the so-called impulse equations in their Lagrangian form. We discuss various other aspects of the Euler equations from a pedagogical point of view. We show that the Hamiltonian in the maximum principle is given by the pairing of the Eulerian impulse density with the velocity. We provide a comparative discussion of the flow equations in their Eulerian and Lagrangian form and describe how these forms occur naturally in the context of optimal control. We demonstrate that the extremal equations corresponding to the optimal control problem for the flow have a natural canonical symplectic structure.Comment: 6 pages, no figures. To appear in Proceedings of the 39th IEEEE Conference on Decision and Contro

    Kinetic energy functional for Fermi vapors in spherical harmonic confinement

    Full text link
    Two equations are constructed which reflect, for fermions moving independently in a spherical harmonic potential, a differential virial theorem and a relation between the turning points of kinetic energy and particle densities. These equations are used to derive a differential equation for the particle density and a non-local kinetic energy functional.Comment: 8 pages, 2 figure
    • …
    corecore