We consider some fundamental properties of infinite dimensional Hamiltonian systems,
both linear and nonlinear. For exemple, in the case of linear systems, we prove a symplectic
version of the teorem of M. Stone. In the general case we establish conservation of energy
and the moment function for system with symmetry. (The moment function was introduced
by B. Kostant and J .M. Souriau). For infinite dimensional systems these conservation
laws are more delicate than those for finite dimensional systems because we are dealing with
partial as opposed to ordinary differential equations