4,960 research outputs found

    Variational Principles for Lagrangian Averaged Fluid Dynamics

    Full text link
    The Lagrangian average (LA) of the ideal fluid equations preserves their transport structure. This transport structure is responsible for the Kelvin circulation theorem of the LA flow and, hence, for its convection of potential vorticity and its conservation of helicity. Lagrangian averaging also preserves the Euler-Poincar\'e (EP) variational framework that implies the LA fluid equations. This is expressed in the Lagrangian-averaged Euler-Poincar\'e (LAEP) theorem proven here and illustrated for the Lagrangian average Euler (LAE) equations.Comment: 23 pages, 3 figure

    Differential rotation of Kepler-71 via transit photometry mapping of faculae and starspots

    Get PDF
    Knowledge of dynamo evolution in solar-type stars is limited by the difficulty of using active region monitoring to measure stellar differential rotation, a key probe of stellar dynamo physics. This paper addresses the problem by presenting the first ever measurement of stellar differential rotation for a main-sequence solar-type star using starspots and faculae to provide complementary information. Our analysis uses modelling of light curves of multiple exoplanet transits for the young solar-type star Kepler-71, utilizing archival data from the Kepler mission. We estimate the physical characteristics of starspots and faculae on Kepler-71 from the characteristic amplitude variations they produce in the transit light curves and measure differential rotation from derived longitudes. Despite the higher contrast of faculae than those in the Sun, the bright features on Kepler-71 have similar properties such as increasing contrast towards the limb and larger sizes than sunspots. Adopting a solar-type differential rotation profile (faster rotation at the equator than the poles), the results from both starspot and facula analysis indicate a rotational shear less than about 0.005 rad d-1, or a relative differential rotation less than 2 per cent, and hence almost rigid rotation. This rotational shear contrasts with the strong rotational shear of zero-age main-sequence stars and the modest but significant shear of the modern-day Sun. Various explanations for the likely rigid rotation are considered

    Cometary Astrometry

    Get PDF
    Modern techniques for making cometary astrometric observations, reducing these observations, using accurate reference star catalogs, and computing precise orbits and ephemerides are discussed in detail and recommendations and suggestions are given in each area

    Generalized Euler-Poincar\'e equations on Lie groups and homogeneous spaces, orbit invariants and applications

    Full text link
    We develop the necessary tools, including a notion of logarithmic derivative for curves in homogeneous spaces, for deriving a general class of equations including Euler-Poincar\'e equations on Lie groups and homogeneous spaces. Orbit invariants play an important role in this context and we use these invariants to prove global existence and uniqueness results for a class of PDE. This class includes Euler-Poincar\'e equations that have not yet been considered in the literature as well as integrable equations like Camassa-Holm, Degasperis-Procesi, μ\muCH and μ\muDP equations, and the geodesic equations with respect to right invariant Sobolev metrics on the group of diffeomorphisms of the circle

    Surface differential rotation and prominences of the Lupus post T Tauri star RX J1508.6-4423

    Get PDF
    We present in this paper a spectroscopic monitoring of the Lupus post T Tauri star RX J1508.6-4423 carried out at two closely separated epochs (1998 May 06 and 10) with the UCL Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Applying least-squares convolution and maximum entropy image reconstruction techniques to our sets of spectra, we demonstrate that this star features on its surface a large cool polar cap with several appendages extending to lower latitudes, as well as one spot close to the equator. The images reconstructed at both epochs are in good overall agreement, except for a photospheric shear that we interpret in terms of latitudinal differential rotation. Given the spot distribution at the epoch of our observations, differential rotation could only be investigated between latitudes 15° and 60°. We find in particular that the observed differential rotation is compatible with a solar-like law (i.e., with rotation rate decreasing towards high latitudes proportionally to sin 2l, where l denotes the latitude) in this particular latitude range. Assuming that such a law can be extrapolated to all latitudes, we find that the equator of RX J1508.6-4423 does one more rotational cycle than the pole every 50 ±10 d, implying a photospheric shear 2 to 3 times stronger than that of the Sun. We also discover that the Hα emission profile of RX J1508.6-4423 is most of the time double-peaked and strongly modulated with the rotation period of the star. We interpret this rotationally modulated emission as being caused by a dense and complex prominence system, the circumstellar distribution of which is obtained through maximum entropy Doppler tomography. These maps show in particular that prominences form a complete and inhomogeneous ring around the star, precisely at the corotation radius. We use the total Hα and Hβ emission flux to estimate that the mass of the whole prominence system is about 10 20g. From our observation that the whole cloud system surrounding the star is regenerated in less than 4 d, we conclude that the braking time-scale of RX J1508.6-4423 is shorter than 1 Gyr, and that prominence expulsion is thus likely to contribute significantly to the rotational spindown of young low-mass stars

    Spacelike surfaces with free boundary in the Lorentz-Minkowski space

    Full text link
    We investigate a variational problem in the Lorentz-Minkowski space \l^3 whose critical points are spacelike surfaces with constant mean curvature and making constant contact angle with a given support surface along its common boundary. We show that if the support surface is a pseudosphere, then the surface is a planar disc or a hyperbolic cap. We also study the problem of spacelike hypersurfaces with free boundary in the higher dimensional Lorentz-Minkowski space \l^{n+1}.Comment: 16 pages. Accepted in Classical and Quantum Gravit

    Bulgac-Kusnezov-Nos\'e-Hoover thermostats

    Full text link
    In this paper we formulate Bulgac-Kusnezov constant temperature dynamics in phase space by means of non-Hamiltonian brackets. Two generalized versions of the dynamics are similarly defined: one where the Bulgac-Kusnezov demons are globally controlled by means of a single additional Nos\'e variable, and another where each demon is coupled to an independent Nos\'e-Hoover thermostat. Numerically stable and efficient measure-preserving time-reversible algorithms are derived in a systematic way for each case. The chaotic properties of the different phase space flows are numerically illustrated through the paradigmatic example of the one-dimensional harmonic oscillator. It is found that, while the simple Bulgac-Kusnezov thermostat is apparently not ergodic, both of the Nos\'e-Hoover controlled dynamics sample the canonical distribution correctly

    Zeeman doppler imaging of the surface activity and magnetic fields of young solar-type stars

    Get PDF
    The cyclic magnetic activity of the modern-day Sun is generally considered to be powered by a self-regenerating interface-layer dynamo. However, Zeeman Doppler Imaging of the spots and magnetic fields of active young solar-type stars suggests that a distributed rather than an interface-layer dynamo is present. This paper outlines techniques we have used to map and study the spots and surface magnetic fields of a small sample of young active solar-type stars, the results obtained, and the implications for magnetic field generation in young cool stars

    Winds of Planet Hosting Stars

    Get PDF
    The field of exoplanetary science is one of the most rapidly growing areas of astrophysical research. As more planets are discovered around other stars, new techniques have been developed that have allowed astronomers to begin to characterise them. Two of the most important factors in understanding the evolution of these planets, and potentially determining whether they are habitable, are the behaviour of the winds of the host star and the way in which they interact with the planet. The purpose of this project is to reconstruct the magnetic fields of planet hosting stars from spectropolarimetric observations, and to use these magnetic field maps to inform simulations of the stellar winds in those systems using the Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) code. The BATS-R-US code was originally written to investigate the behaviour of the Solar wind, and so has been altered to be used in the context of other stellar systems. These simulations will give information about the velocity, pressure and density of the wind outward from the host star. They will also allow us to determine what influence the winds will have on the space weather environment of the planet. This paper presents the preliminary results of these simulations for the star τ\tau Bo\"otis, using a newly reconstructed magnetic field map based on previously published observations. These simulations show interesting structures in the wind velocity around the star, consistent with the complex topology of its magnetic field.Comment: 8 pages, 2 figures, accepted for publication in the peer-reviewed proceedings of the 14th Australian Space Research Conference, held at the University of South Australia, 29th September - 1st October 201

    Explicit Lie-Poisson integration and the Euler equations

    Full text link
    We give a wide class of Lie-Poisson systems for which explicit, Lie-Poisson integrators, preserving all Casimirs, can be constructed. The integrators are extremely simple. Examples are the rigid body, a moment truncation, and a new, fast algorithm for the sine-bracket truncation of the 2D Euler equations.Comment: 7 pages, compile with AMSTEX; 2 figures available from autho
    corecore