336 research outputs found
The Dynamical History of Chariklo and its Rings
Chariklo is the only small Solar system body confirmed to have rings. Given
the instability of its orbit, the presence of rings is surprising, and their
origin remains poorly understood. In this work, we study the dynamical history
of the Chariklo system by integrating almost 36,000 Chariklo clones backwards
in time for one Gyr under the influence of the Sun and the four giant planets.
By recording all close encounters between the clones and planets, we
investigate the likelihood that Chariklo's rings could have survived since its
capture to the Centaur population. Our results reveal that Chariklo's orbit
occupies a region of stable chaos, resulting in its orbit being marginally more
stable than those of the other Centaurs. Despite this, we find that it was most
likely captured to the Centaur population within the last 20 Myr, and that its
orbital evolution has been continually punctuated by regular close encounters
with the giant planets. The great majority (> 99%) of those encounters within
one Hill radius of the planet have only a small effect on the rings. We
conclude that close encounters with giant planets have not had a significant
effect on the ring structure. Encounters within the Roche limit of the giant
planets are rare, making ring creation through tidal disruption unlikely
Magnetic fields and differential rotation on the pre-main sequence
Maps of magnetic field topologies of rapidly rotating stars obtained over the last decade or so have provided unique insight into the operation of stellar dynamos. However, for solar-type stars many of the targets imaged to date have been lower-mass zero-age main sequence stars. We present magnetic maps and differential rotation measurements of two-higher mass pre-main sequence stars HD 106506 (~10 Myrs) and HD 141943 (~15 Myrs). These stars should evolve into mid/late F-stars with predicted high differential rotation and little magnetic activity. We investigate what effect the extended convection zones of these pre-main sequence stars has on their differential rotation and magnetic topologies. ©2009 American Institute of Physic
Observation of a possible superflare on Proxima Centauri
We report the observation on UT 2017 July 1 of an unusually powerful flare detected in near-infrared continuum photometry of Proxima Centauri. During a campaign monitoring the star for possible exoplanet transits, we identified an increase in Sloan i' flux leading to an observed peak at BJD 2457935.996 that was at least 10 per cent over pre-flare flux in this band. It was followed by a two-component rapid decline in the first 100 s that became a slower exponential decay with time constant of 1350 s. A smaller flare event 1300 s after the first added an incremental peak flux increase of 1 per cent of pre-flare flux. Since the onset of the flare was not fully time resolved at a cadence of 62 s, its actual peak value is unknown but greater than the time average over a single exposure of 20 s. The i' band is representative of broad optical and near-IR continuum flux over which the integrated energy of the flare is 100 times the stellar luminosity. This meets the criteria that established the concept of superflares on similar stars. The resulting implied ultraviolet flux and space weather could have had an extreme effect on the atmospheres of planets within the star's otherwise habitable zone
Differences in peripheral noradrenergic function among actively drinking and abstinent alcohol-dependent individuals.
We examined whether excessive alcohol consumption was related to changes in plasma levels of noradrenaline (NA) and whether these changes recover following abstinence. We also explored whether there were differences in NA levels between Type I and Type II alcoholics and controls during active drinking and abstinence. Plasma concentrations of NA were determined in (1) 27 Caucasian men with alcohol dependence who were regularly drinking (active drinkers) within 24 hours of hospitalization, (2) 29 Caucasian alcohol-dependent men who were in remission (abstinent for a minimum of three months), and (3) 28 race- and gender-matched healthy controls. NA concentrations were significantly higher in actively drinking alcohol-dependent subjects compared to those in remission and controls. While Type I and Type II alcoholic individuals differed across clinical measures, NA levels were similar in the two subtypes. Both subtypes showed an elevation in NA levels during active drinking compared to controls, but NA levels did not differ between the two subtypes and controls during remission. The findings indicate that chronic exposure to alcohol may lead to disturbances in NA activity that may manifest in early abstinence. However, the changes in NA activity appears to normalize after a longer period of abstinence. Alterations in NA activity do not seem to be specific for Type I or Type II subtypes of alcoholism
The effects of stellar winds on the magnetospheres and potential habitability of exoplanets
Context: The principle definition of habitability for exoplanets is whether
they can sustain liquid water on their surfaces, i.e. that they orbit within
the habitable zone. However, the planet's magnetosphere should also be
considered, since without it, an exoplanet's atmosphere may be eroded away by
stellar winds. Aims: The aim of this paper is to investigate magnetospheric
protection of a planet from the effects of stellar winds from solar-mass stars.
Methods: We study hypothetical Earth-like exoplanets orbiting in the host
star's habitable zone for a sample of 124 solar-mass stars. These are targets
that have been observed by the Bcool collaboration. Using two wind models, we
calculate the magnetospheric extent of each exoplanet. These wind models are
computationally inexpensive and allow the community to quickly estimate the
magnetospheric size of magnetised Earth-analogues orbiting cool stars. Results:
Most of the simulated planets in our sample can maintain a magnetosphere of ~5
Earth radii or larger. This suggests that magnetised Earth analogues in the
habitable zones of solar analogues are able to protect their atmospheres and is
in contrast to planets around young active M dwarfs. In general, we find that
Earth-analogues around solar-type stars, of age 1.5 Gyr or older, can maintain
at least a Paleoarchean Earth sized magnetosphere. Our results indicate that
planets around 0.6 - 0.8 solar-mass stars on the low activity side of the
Vaughan-Preston gap are the optimum observing targets for habitable Earth
analogues.Comment: 8 pages, 3 figures, accepted to Astronomy and Astrophysic
A Kolmogorov theorem for nearly-integrable Poisson systems with asymptotically decaying time-dependent perturbation
The aim of this paper is to prove the Kolmogorov theorem of persistence of
Diophantine flows for nearly-integrable Poisson systems associated to a real
analytic Hamiltonian with aperiodic time dependence, provided that the
perturbation is asymptotically vanishing. The paper is an extension of an
analogous result by the same authors for canonical Hamiltonian systems; the
flexibility of the Lie series method developed by A. Giorgilli et al., is
profitably used in the present generalisation.Comment: 10 page
Starspots and relativity: Applied Doppler imaging for the Gravity Probe B mission
We present Doppler images and surface differential rotation measurements for the primary of the RS CVn binary IM Pegasi, the guide star for the Gravity Probe B experiment. The data used is a subset of that taken during optical support of the mission and was obtained almost nightly over a near three year period from the Automatic Spectroscopic Telescope operated by Tennessee State University. Using the technique of least-squares deconvolution to increase the signal-to-noise ratio of the data, we have reconstructed 31 maximum entropy Doppler images of the star. The images show that the spot features are relatively stable for over a year (and possibly longer) with both a polar spot and lower latitude features. The most intense features are located on the side facing the secondary. In addition, we have incorporated a solar-like differential rotation law into the imaging process to determine the level of surface differential rotation for IM Peg for 22 epochs. A weighted least-squares average of the measurements gives a surface shear of 0.0142 ± 0.0007 rad/d, meaning that the equator takes ∼440 ± 20 days to lap the poles. Although the level of surface differential rotation was shown to vary over the period of the observations, this may indicate an underestimate in the errors of the method rather than any temporal evolution in the differential rotation
Measuring the severity of close encounters between ringed small bodies and planets
Rings have recently been discovered around the trans-Neptunian object (TNO) 136108 Haumea and the Centaur 10199 Chariklo. Rings are also suspected around the Centaur 2060 Chiron. As planetary close encounters with ringed small bodies can affect ring longevity, we previously
measured the severity of such encounters of Chariklo and Chiron using the minimum encounter distance, dmin. The value of dmin that separates noticeable encounters from non-noticeable encounters we called the ‘ring limit’, R. R was then approximated as 10 tidal disruption distances, 10Rtd. In this work, we seek to find analytical expressions for R that fully account for the effects of the planet mass, small body mass, ms, ring orbital radius, r, and velocity at
infinity, v∞, for fictitious ringed Centaurs using ranges 2 × 1020 kg ≤ms≤ 1 Pluto mass and 25 000 ≤r ≤ 100 000 km. To accomplish this, we use numerical integration to simulate close encounters between each giant planet and ringed Centaurs in the three-body planar problem. The results show that R has a lower bound of approximately 1.8Rtd. We compare analytical and experimental R values for a fictitious Haumea, Chariklo, and Chiron with r= 50 000 km.
The agreement is excellent for Haumea, but weaker for Chariklo and Chiron. The agreement is best for Jupiter and Saturn. The ring limits of the real Haumea, Chariklo, and Chiron are <4Rtd. Experimental R values for the fictitious bodies make better approximations for the R values of the real bodies than does 10Rtd. Analytical values make good first approximations
A New Limit on the Antiproton Lifetime
Measurements of the cosmic ray pbar/p ratio are compared to predictions from
an inhomogeneous disk-diffusion model of pbar production and propagation within
the Galaxy, combined with a calculation of the modulation of the interstellar
cosmic ray spectra as the particles propagate through the heliosphere to the
Earth. The predictions agree with the observed pbar/p spectrum. Adding a finite
pbar lifetime to the model, we obtain the limit tau_pbar > 0.8 Myr (90 % C.L.).Comment: 13 pages, 3 encapsulated Postscript figures, uses AASTeX; accepted by
Astrophysical Journal; minor change
- …