884 research outputs found
Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
The first three-dimensional, nonlinear gyrokinetic simulation of plasma
turbulence resolving scales from the ion to electron gyroradius with a
realistic mass ratio is presented, where all damping is provided by resolved
physical mechanisms. The resulting energy spectra are quantitatively consistent
with a magnetic power spectrum scaling of as observed in \emph{in
situ} spacecraft measurements of the "dissipation range" of solar wind
turbulence. Despite the strongly nonlinear nature of the turbulence, the linear
kinetic \Alfven wave mode quantitatively describes the polarization of the
turbulent fluctuations. The collisional ion heating is measured at
sub-ion-Larmor radius scales, which provides the first evidence of the ion
entropy cascade in an electromagnetic turbulence simulation.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma
A connection between kinetic processes and intermittent turbulence is
observed in the solar wind plasma using measurements from the Wind spacecraft
at 1 AU. In particular, kinetic effects such as temperature anisotropy and
plasma heating are concentrated near coherent structures, such as current
sheets, which are non-uniformly distributed in space. Furthermore, these
coherent structures are preferentially found in plasma unstable to the mirror
and firehose instabilities. The inhomogeneous heating in these regions, which
is present in both the magnetic field parallel and perpendicular temperature
components, results in protons at least 3-4 times hotter than under typical
stable plasma conditions. These results offer a new understanding of kinetic
processes in a turbulent regime, where linear Vlasov theory is not sufficient
to explain the inhomogeneous plasma dynamics operating near non-Gaussian
structures.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
Computation of Kolmogorov's Constant in Magnetohydrodynamic Turbulence
In this paper we calculate Kolmogorov's constant for magnetohydrodynamic
turbulence to one loop order in perturbation theory using the direct
interaction approximation technique of Kraichnan. We have computed the
constants for various , i.e., fluid to magnetic energy ratios
when the normalized cross helicity is zero. We find that increases from
1.47 to 4.12 as we go from fully fluid case to a situation when , then it decreases to 3.55 in a fully magnetic limit .
When , we find that .Comment: Latex, 10 pages, no figures, To appear in Euro. Phys. Lett., 199
On the nature of spectral line broadening in solar coronal dimmings
We analyze the profiles of iron emission lines observed in solar coronal
dimmings associated with coronal mass ejections, using the EUV Imaging
Spectrometer on board Hinode. We quantify line profile distortions with
empirical coefficients (asymmetry and peakedness) that compare the fitted
Gaussian to the data. We find that the apparent line broadenings reported in
previous studies are likely to be caused by inhomogeneities of flow velocities
along the line of sight, or at scales smaller than the resolution scale, or by
velocity fluctuations during the exposure time. The increase in the amplitude
of Alfv\'en waves cannot, alone, explain the observed features. A
double-Gaussian fit of the line profiles shows that, both for dimmings and
active region loops, one component is nearly at rest while the second component
presents a larger Doppler shift than that derived from a single-Gaussian fit.Comment: 16 pages, 11 figures - Accepted for publication in Ap
A nonextensive entropy approach to solar wind intermittency
The probability distributions (PDFs) of the differences of any physical
variable in the intermittent, turbulent interplanetary medium are scale
dependent. Strong non-Gaussianity of solar wind fluctuations applies for short
time-lag spacecraft observations, corresponding to small-scale spatial
separations, whereas for large scales the differences turn into a Gaussian
normal distribution. These characteristics were hitherto described in the
context of the log-normal, the Castaing distribution or the shell model. On the
other hand, a possible explanation for nonlocality in turbulence is offered
within the context of nonextensive entropy generalization by a recently
introduced bi-kappa distribution, generating through a convolution of a
negative-kappa core and positive-kappa halo pronounced non-Gaussian structures.
The PDFs of solar wind scalar field differences are computed from WIND and ACE
data for different time lags and compared with the characteristics of the
theoretical bi-kappa functional, well representing the overall scale dependence
of the spatial solar wind intermittency. The observed PDF characteristics for
increased spatial scales are manifest in the theoretical distribution
functional by enhancing the only tuning parameter , measuring the
degree of nonextensivity where the large-scale Gaussian is approached for
. The nonextensive approach assures for experimental studies
of solar wind intermittency independence from influence of a priori model
assumptions. It is argued that the intermittency of the turbulent fluctuations
should be related physically to the nonextensive character of the
interplanetary medium counting for nonlocal interactions via the entropy
generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.
Integrating Addiction Treatment into Primary Care Using Mobile Health Technology: Protocol for an Implementation Research Study
Healthcare reform in the United States is encouraging Federally Qualified Health Centers and other primary-care practices to integrate treatment for addiction and other behavioral health conditions into their practices. The potential of mobile health technologies to manage addiction and comorbidities such as HIV in these settings is substantial but largely untested. This paper describes a protocol to evaluate the implementation of an E-Health integrated communication technology delivered via mobile phones, called Seva, into primary-care settings. Seva is an evidence-based system of addiction treatment and recovery support for patients and real-time caseload monitoring for clinicians
Legionella bozemanii , an Elusive Agent of Fatal Cavitary Pneumonia
Abstract : A 67-year-old patient died of Legionella bozemanii pneumonia with negative urinary antigen and negative serology. Cystic lesions in pneumonia of unknown origin should lead to the differential diagnosis of L. bozemanii infection
- …