66 research outputs found

    Computed tomography porosity and spherical indentation for determining cortical bone millimetre-scale mechanical properties

    Get PDF
    The cortex of the femoral neck is a key structural element of the human body, yet there is not a reliable metric for predicting the mechanical properties of the bone in this critical region. This study explored the use of a range of non-destructive metrics to measure femoral neck cortical bone stiffness at the millimetre length scale. A range of testing methods and imaging techniques were assessed for their ability to measure or predict the mechanical properties of cortical bone samples obtained from the femoral neck of hip replacement patients. Techniques that can potentially be applied in vivo to measure bone stiffness, including computed tomography (CT), bulk wave ultrasound (BWUS) and indentation, were compared against in vitro techniques, including compression testing, density measurements and resonant ultrasound spectroscopy. Porosity, as measured by micro-CT, correlated with femoral neck cortical bone’s elastic modulus and ultimate compressive strength at the millimetre length scale. Large-tip spherical indentation also correlated with bone mechanical properties at this length scale but to a lesser extent. As the elastic mechanical properties of cortical bone correlated with porosity, we would recommend further development of technologies that can safely measure cortical porosity in vivo. Introductio

    Exploring factors affecting undergraduate medical students’ study strategies in the clinical years: a qualitative study

    Get PDF
    The aim of this study is to explore the effects of clinical supervision, and assessment characteristics on the study strategies used by undergraduate medical students during their clinical rotations. We conducted a qualitative phenomenological study at King Saud Bin Abdulaziz University for Health Sciences, College of Medicine, Riyadh, Saudi Arabia during the period from November 2007 to December 2008. We conducted semi-structured focus groups interviews with students and conducted individual interviews with teachers and students to explore students’ and clinical teachers’ perceptions and interpretations of factors influencing students’ study strategies. Data collection was continued until saturation was reached. We used Atlas-ti Computer Software (Version 5.2) to analyse the data, apply the obtained themes to the whole dataset and rearrange the data according to the themes and sub-themes. Analysis of data from interviews with twenty-eight students and thirteen clinical supervisors yielded three major themes relating to factors affecting students’ study strategies: “clinical supervisors and supervision”, “stress and anxiety” and “assessment”. The three themes we identified played a role in students’ adoption of different study strategies in the “community of clinical practice”. It appeared that teachers played a key role, particularly as assessors, clinical supervisors and as a source of stress to students

    J-Integral Calculation by Finite Element Processing of Measured Full-Field Surface Displacements

    Get PDF
    © 2017 The Author(s)A novel method has been developed based on the conjoint use of digital image correlation to measure full field displacements and finite element simulations to extract the strain energy release rate of surface cracks. In this approach, a finite element model with imported full-field displacements measured by DIC is solved and the J-integral is calculated, without knowledge of the specimen geometry and applied loads. This can be done even in a specimen that develops crack tip plasticity, if the elastic and yield behaviour of the material are known. The application of the method is demonstrated in an analysis of a fatigue crack, introduced to an aluminium alloy compact tension specimen (Al 2024, T351 heat condition)

    Evolutionary Computation, Optimization and Learning Algorithms for Data Science

    Get PDF
    A large number of engineering, science and computational problems have yet to be solved in a computationally efficient way. One of the emerging challenges is how evolving technologies grow towards autonomy and intelligent decision making. This leads to collection of large amounts of data from various sensing and measurement technologies, e.g., cameras, smart phones, health sensors, smart electricity meters, and environment sensors. Hence, it is imperative to develop efficient algorithms for generation, analysis, classification, and illustration of data. Meanwhile, data is structured purposefully through different representations, such as large-scale networks and graphs. We focus on data science as a crucial area, specifically focusing on a curse of dimensionality (CoD) which is due to the large amount of generated/sensed/collected data. This motivates researchers to think about optimization and to apply nature-inspired algorithms, such as evolutionary algorithms (EAs) to solve optimization problems. Although these algorithms look un-deterministic, they are robust enough to reach an optimal solution. Researchers do not adopt evolutionary algorithms unless they face a problem which is suffering from placement in local optimal solution, rather than global optimal solution. In this chapter, we first develop a clear and formal definition of the CoD problem, next we focus on feature extraction techniques and categories, then we provide a general overview of meta-heuristic algorithms, its terminology, and desirable properties of evolutionary algorithms

    Intergranular crack nucleation in polycrystalline alumina

    No full text
    Crack nuclei in pure and Cr-doped aluminas with average grain size between 1.5 μm and 3.6 μm have been studied using digital image correlation of optical images, to observe the interaction between microstructure, residual stress and damage development. Individual intergranular crack nuclei within areas comprising tens of thousands of grains were studied to measure crack surface lengths and crack opening displacements as a function of load, prior to unstable fracture. Grain orientations in the vicinity of intergranular crack nuclei, and the grain boundary planes, has been characterised by trace analysis and electron backscatter diffraction. This allows estimation of the thermal stresses that were sufficient to crack the grain boundaries

    Intergranular crack nuclei in polycrystalline alumina

    No full text
    Digital image correlation has been applied to optical images in order to detect crack nuclei in fine-grain size pure and Cr-doped aluminas. Individual intergranular crack nuclei within areas comprising tens of thousands of grains were detectable, and their crack lengths and opening strains obtained as a function of load prior to unstable fracture. Identification of the crack nuclei by this method allowed the grain boundary plane and grain orientations in the vicinity of crack nuclei to be characterised by electron microscopy. Crack nuclei were found to develop at boundaries that are predicted to have higher tensile thermal strains, caused by the orientation of the grain boundary plane relative to the adjacent grains. Copyright 2012 Elsevier Ltd

    A method for fracture toughness measurement in trabecular bone using computed tomography, image correlation and finite element methods

    No full text
    The fracture resistance of load-bearing trabecular bone is adversely affected by diseases such as osteoporosis. However, there are few published measurements of trabecular bone fracture toughness due to the difficulty of conducting reliable tests in small specimens of this highly porous material. A new approach is demonstrated that uses digital volume correlation of X-ray computed tomographs to measure 3D displacement fields in which the crack shape and size can be objectively identified using a phase congruency analysis. The criteria for crack propagation, i.e. fracture toughness, can then be derived by finite element simulation, with knowledge of the elastic properties
    corecore