8 research outputs found

    De novo FUS mutations are the most frequent genetic cause in early-onset German ALS patients

    No full text
    In amyotrophic lateral sclerosis (ALS) patients with known genetic cause, mutations in chromosome 9 open reading frame 72 (C9orf72) and superoxide dismutase 1 (SOD1) account for most familial and late-onset sporadic cases, whereas mutations in fused in sarcoma (FUS) can be identified in just around 5% of familial and 1% of overall sporadic cases. There are only few reports on de novo FUS mutations in juvenile ALS patients. To date, no systematic evaluation on the frequency of de novo FUS mutations in early-onset ALS patients has been conducted. Here, we screened a cohort of 14 early-onset sporadic ALS patients (onset age <35 years) to determine the frequency of mutations in C9orf72, SOD1, and FUS in this defined patient cohort. All patients were recruited prospectively by a single center in a period of 38 months. No mutations were detected in SOD1 or C9orf72; however, we identified 6 individuals (43%) carrying a heterozygous FUS mutation including 1 mutation that has not been described earlier (c.1504delG [p.Asp502Thrfs*27]). Genetic testing of parents was possible in 5 families and revealed that the mutations in these patients arose de novo. Three of the 6 identified patients presented with initial bulbar symptoms. Our study identifies FUS mutations as the most frequent genetic cause in early-onset ALS. Genetic testing of FUS thus seems indicated in sporadic early-onset ALS patients especially if showing predominant bulbar symptoms and an aggressive disease course. (C) 2015 Elsevier Inc. All rights reserved

    The role of de novo mutations in the development of amyotrophic lateral sclerosis

    No full text
    The genetic basis combined with the sporadic occurrence of amyotrophic lateral sclerosis (ALS) suggests a role of de novo mutations in disease pathogenesis. Previous studies provided some evidence for this hypothesis; however, results were conflicting: no genes with recurrent occurring de novo mutations were identified and different pathways were postulated. In this study, we analyzed whole-exome data from 82 new patient-parents trios and combined it with the datasets of all previously published ALS trios (173 trios in total). The per patient de novo rate was not higher than expected based on the general population (P = 0.40). We showed that these mutations are not part of the previously postulated pathways, and gene-gene interaction analysis found no enrichment of interacting genes in this group (P = 0.57). Also, we were able to show that the de novo mutations in ALS patients are located in genes already prone for de novo mutations (P < 1 x 10(-15)). Although the individual effect of rare de novo mutations in specific genes could not be assessed, our results indicate that, in contrast to previous hypothesis, de novo mutations in general do not impose a major burden on ALS risk

    Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia

    No full text
    Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative syndrome hallmarked by adult-onset loss of motor neurons. We performed exome sequencing of 252 familial ALS (fALS) and 827 control individuals. Gene-based rare variant analysis identified an exome-wide significant enrichment of eight loss-of-function (LoF) mutations in TBK1 (encoding TANK-binding kinase 1) in 13 fALS pedigrees. No enrichment of LoF mutations was observed in a targeted mutation screen of 1,010 sporadic ALS and 650 additional control individuals. Linkage analysis in four families gave an aggregate LOD score of 4.6. In vitro experiments confirmed the loss of expression of TBK1 LoF mutant alleles, or loss of interaction of the C-terminal TBK1 coiled-coil domain (CCD2) mutants with the TBK1 adaptor protein optineurin, which has been shown to be involved in ALS pathogenesis. We conclude that haploinsufficiency of TBK1 causes ALS and fronto-temporal dementia.info:eu-repo/semantics/publishedVersio
    corecore