4 research outputs found

    Two temperature viscous accretion flows around rotating black holes: Description of under-fed systems to ultra-luminous X-ray sources

    Full text link
    We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2\gsim\alpha\gsim0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (LL) of two extreme cases -- the under-fed AGNs and quasars (e.g. Sgr AA^*) with L\gsim 10^{33} erg/sec to ultra-luminous X-ray sources with L1041L\sim 10^{41} erg/sec, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr AA^* may be an intermediate spinning black hole.Comment: 21 pages including 5 figures; few typos corrected; to appear in New Astronom

    SPT-SZ MCMF: an extension of the SPT-SZ catalog over the DES region

    No full text
    We present an extension to a Sunyaev-Zel'dovich Effect (SZE) selected cluster catalog based on observations from the South Pole Telescope (SPT); this catalog extends to lower signal-to-noise than the previous SPT-SZ catalog and therefore includes lower mass clusters. Optically derived redshifts, centers, richnesses and morphological parameters together with catalog contamination and completeness statistics are extracted using the multi-component matched filter algorithm (MCMF) applied to the S/N>4 SPT-SZ candidate list and the Dark Energy Survey (DES) photometric galaxy catalog. The main catalog contains 811 sources above S/N=4, has 91% purity and is 95% complete with respect to the original SZE selection. It contains 50% more total clusters and twice as many clusters above z=0.8 in comparison to the original SPT-SZ sample. The MCMF algorithm allows us to define subsamples of the desired purity with traceable impact on catalog completeness. As an example, we provide two subsamples with S/N>4.25 and S/N>4.5 for which the sample contamination and cleaning-induced incompleteness are both as low as the expected Poisson noise for samples of their size. The subsample with S/N>4.5 has 98% purity and 96% completeness, and will be included in a combined SPT cluster and DES weak-lensing cosmological analysis. We measure the number of false detections in the SPT-SZ candidate list as function of S/N, finding that it follows that expected from assuming Gaussian noise, but with a lower amplitude compared to previous estimates from simulations

    Treatment, Outcomes, and Challenges of Newly Diagnosed AML in Children and Adolescents

    No full text
    corecore