56 research outputs found

    A bacterial formula with native strains as alternative to chemical fertiliser for tomato crop

    Get PDF
    Global tomato productivity is threatened by biotic and abiotic stressors. To support and guarantee an adequate yield of tomato crops, agricultural practices have been based on the intensive use of fertilisers with negative impacts on the environment. This study presents a simple and effective strategy of functional bioaugmentation, suitable for different varieties, to replace chemical fertilisation. A tailored microbial formula composed by eight indigenous strains (including the genera Delftia, Pseudomonas, Paenarthrobacter, Phyllobacterium, Bacillus, and Acinetobacter) was developed as biofertilizer. Strains were selected from native soil for their plant growth-promoting (PGP) functions, and combined respecting the taxonomic composition of the original PGP heterotrophic community structure. The effect of the bio-fertilisation vs chemical fertilisation was tested in three successive field trials in the company greenhouse, with different tomato varieties (Camone, Oblungo, Cherry). When bio-fertilisation was applied only twice during the Camone's life cycle, tomato yield was significantly reduced (0.8 vs 2.1 kg per plant, p = 0.0003). However, monthly inoculation during plant growth led to a fruit yield comparable to that obtained with chemical fertilisers (about 1.5 kg per plant for Oblungo, and about 2 kg per plant for Cherry variety, p = 0.9999). Bio-fertilization did not significantly affect plant height; only during the last growing period of the Cherry variety, a significantly higher average plant height (p < 0.0001) was observed with chemical fertiliser. The results indicate that a knowledge-based bacterial formula and monthly inoculation during the plant growth can be a successful bio-fertilisation strategy. These findings may pave the way towards more sustainable tomato production, since farming practices are becoming increasingly crucial, in accordance with Agenda 2030 and the UE "Farm to Fork" strategy.[GRAPHICS]

    Cerebrospinal fluid matrix metalloproteinase-9 increases during treatment of recurrent malignant gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinases (MMPs) are enzymes that promote tumor invasion and angiogenesis by enzymatically remodeling the extracellular matrix. MMP-2 and MMP-9 are the most abundant forms of MMPs in malignant gliomas, while a 130 kDa MMP is thought to be MMP-9 complexed to other proteinases. This study determined whether doxycycline can block MMP activity <it>in vitro</it>. We also measured MMP-2 and MMP-9 levels in cerebrospinal fluid (CSF) from patients with recurrent malignant gliomas.</p> <p>Methods</p> <p>To determine whether doxycycline can block MMP activity, we measured the extent of doxycyline-mediated MMP-2 and MMP-9 inhibition <it>in vitro </it>using epidermal growth factor receptor (EGFR) transfected U251 glioma cell lines. MMP activity was measured using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) zymography. In addition, patients underwent lumbar puncture for CSF sampling at baseline, after 6 weeks (1 cycle), and after 12 weeks (2 cycles), while being treated with a novel chemotherapy regimen of irinotecan, thalidomide, and doxycycline designed to block growth/proliferation, angiogenesis, and invasion. Irinotecan was given at 125 mg/m<sup>2</sup>/week for 4 weeks in 6-week cycles, together with continuous doxycycline at 100 mg twice daily on Day 1 and 50 mg twice daily thereafter. Daily thalidomide dose in our cohort was 400 mg. Tumor progression was monitored by magnetic resonance imaging (MRI).</p> <p>Results</p> <p>Doxycyline <it>in vitro </it>completely abolished MMP-9 activity at 500 ÎŒg/ml while there was only 30 to 50% inhibition of MMP-2 activity. Four patients respectively completed 4, 3, 1, and 2 cycles of irinotecan, thalidomide, and doxycycline. Patient enrollment was terminated after one patient developed radiologically defined pulmonary embolism, and another had probable pulmonary embolism. Although CSF MMP-2 and 130 kDa MMP levels were stable, MMP-9 level progressively increased during treatment despite stable MRI.</p> <p>Conclusion</p> <p>Doxycycline can block MMP-2 and MMP-9 activities from glioma cells <it>in vitro</it>. Increased CSF MMP-9 activity could be a biomarker of disease activity in patients with malignant gliomas, before any changes are detectable on MRI.</p

    The ongoing pursuit of neuroprotective therapies in Parkinson disease

    Get PDF
    Many agents developed for neuroprotective treatment of Parkinson disease (PD) have shown great promise in the laboratory, but none have translated to positive results in patients with PD. Potential neuroprotective drugs, such as ubiquinone, creatine and PYM50028, have failed to show any clinical benefits in recent high-profile clinical trials. This 'failure to translate' is likely to be related primarily to our incomplete understanding of the pathogenic mechanisms underlying PD, and excessive reliance on data from toxin-based animal models to judge which agents should be selected for clinical trials. Restricted resources inevitably mean that difficult compromises must be made in terms of trial design, and reliable estimation of efficacy is further hampered by the absence of validated biomarkers of disease progression. Drug development in PD dementia has been mostly unsuccessful; however, emerging biochemical, genetic and pathological evidence suggests a link between tau and amyloid-ÎČ deposition and cognitive decline in PD, potentially opening up new possibilities for therapeutic intervention. This Review discusses the most important 'druggable' disease mechanisms in PD, as well as the most-promising drugs that are being evaluated for their potential efficiency in treatment of motor and cognitive impairments in PD

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link
    • 

    corecore