163 research outputs found

    Cryogenic Calibration Setup for Broadband Complex Impedance Measurements

    Full text link
    Reflection measurements give access to the complex impedance of a material on a wide frequency range. This is of interest to study the dynamical properties of various materials, for instance disordered superconductors. However reflection measurements made at cryogenic temperature suffer from the difficulty to reliably subtract the circuit contribution. Here we report on the design and first tests of a setup able to precisely calibrate in situ the sample reflection, at 4.2 K and up to 2 GHz, by switching and measuring, during the same cool down, the sample and three calibration standards.Comment: (6 pages, 6 figures

    Magnetic field-induced quantum superconductor-insulator transition in Nb0.15Si0.85Nb_{0.15}Si_{0.85}

    Full text link
    A study of magnetic-field tuned superconductor-insulator transitions in amorphous Nb0.15Si0.85Nb_{0.15}Si_{0.85} thin films shows that quantum superconductor-insulator transitions are characterized by an unambiguous signature -- a kink in the temperature profile of the critical magnetic field. Using this criterion, we show that the nature of the magnetic-field tuned superconductor-insulator transition depends on the orientation of the field with respect to the film. For perpendicular magnetic field, the transition is controlled by quantum fluctuations with indications for the existence of a Bose insulator; while for parallel magnetic field, the transition is classical, driven by the breaking of Cooper pairs at the temperature dependent critical field Hc2H_{c2}.Comment: 5 pages, 4 figure

    Gender Disparity in Composition and Compensation Among Maryland Hospital Executives

    Full text link
    Introduction: Senior executive positions in hospitals have traditionally been held by men, and do not reflect the gender, racial, ethnic, and cultural diversities of the communities they serve. Despite sex parity in medical school graduates, women remain underrepresented in hospital executive leadership positions. In this study, the authors examined differences in gender composition and compensation of Maryland hospital executives. Methods: The authors examined 47 Maryland hospitals’ publicly available tax forms from 2013-2018. Data collected included hospital revenue and executive positions’ count, salary, and gender. Executive positions included President and/or Chief Executive Officer (P/CEO), Chief Financial Officer (CFO), Chief Medical Officer (CMO), Chief Nursing Officer (CNO), and Chief Operating Officer (COO). All monetary values were inflation-adjusted to the 2017 dollar. Results: Women executives were underrepresented across most roles: P/CEO (41/272, 15%), CFO (72/260, 28%), CMO (28/182, 15%), and COO (44/147, 30%). CNO showed a higher proportion of women executives (129/140, 92%). There were no significant changes in the proportion of women executives over the study period (p=0.19). Men CNO’s had significantly higher salaries as a percentage of hospital revenue (0.16% vs 0.12%, p=0.04) and men COOs had significantly higher salaries as a percentage of hospital positive profit (3.65% vs 2.24%, p\u3c0.01). Conclusion: Data from Maryland hospitals suggest that women remain underrepresented in healthcare executive roles. Further, women executives are generally undercompensated compared to men in similar roles. This study further highlights the need for mentorship and dedicated career pathways to improve women representation in leadership roles in healthcare

    Axion searches with the EDELWEISS-II experiment

    Full text link
    We present new constraints on the couplings of axions and more generic axion-like particles using data from the EDELWEISS-II experiment. The EDELWEISS experiment, located at the Underground Laboratory of Modane, primarily aims at the direct detection of WIMPs using germanium bolometers. It is also sensitive to the low-energy electron recoils that would be induced by solar or dark matter axions. Using a total exposure of up to 448 kg.d, we searched for axion-induced electron recoils down to 2.5 keV within four scenarios involving different hypotheses on the origin and couplings of axions. We set a 95% CL limit on the coupling to photons gAγ<2.13×109g_{A\gamma}<2.13\times 10^{-9} GeV1^{-1} in a mass range not fully covered by axion helioscopes. We also constrain the coupling to electrons, gAe<2.56×1011g_{Ae} < 2.56\times 10^{-11}, similar to the more indirect solar neutrino bound. Finally we place a limit on gAe×gANeff<4.70×1017g_{Ae}\times g_{AN}^{\rm eff}<4.70 \times 10^{-17}, where gANeffg_{AN}^{\rm eff} is the effective axion-nucleon coupling for 57^{57}Fe. Combining these results we fully exclude the mass range 0.91eV<mA<800.91\,{\rm eV}<m_A<80 keV for DFSZ axions and 5.73eV<mA<405.73\,{\rm eV}<m_A<40 keV for KSVZ axions

    Proceedings of the third French-Ukrainian workshop on the instrumentation developments for HEP

    Full text link
    The reports collected in these proceedings have been presented in the third French-Ukrainian workshop on the instrumentation developments for high-energy physics held at LAL, Orsay on October 15-16. The workshop was conducted in the scope of the IDEATE International Associated Laboratory (LIA). Joint developments between French and Ukrainian laboratories and universities as well as new proposals have been discussed. The main topics of the papers presented in the Proceedings are developments for accelerator and beam monitoring, detector developments, joint developments for large-scale high-energy and astroparticle physics projects, medical applications.Comment: 3rd French-Ukrainian workshop on the instrumentation developments for High Energy Physics, October 15-16, 2015, LAL, Orsay, France, 94 page

    Temperature-dependent transport measurements with Arduino

    Get PDF
    The current performances of single-board microcontrollers render them attractive, not only for basic applications, but also for more elaborate projects, amongst which are physics teaching or research. In this article, we show how temperature-dependent transport measurements can be performed by using an Arduino board, from cryogenic temperatures up to room temperature or above. We focus on two of the main issues for this type of experiments: the determination of the sample temperature and the measurement of its resistance. We also detail two student-led experiments: evidencing the magnetocaloric effect in Gadolinium and measuring the resistive transition of a high critical temperature superconductor

    Li2_2100depl^{100\textrm{depl}}MoO4_4 Scintillating Bolometers for Rare-Event Search Experiments

    Full text link
    We report on the development of scintillating bolometers based on lithium molybdate crystals containing molybdenum depleted in the double-β\beta active isotope 100^{100}Mo (Li2_2100depl^{100\textrm{depl}}MoO4_4). We used two Li2_2100depl^{100\textrm{depl}}MoO4_4 cubic samples, 45 mm side and 0.28 kg each, produced following purification and crystallization protocols developed for double-β\beta search experiments with 100^{100}Mo-enriched Li2_2MoO4_4 crystals. Bolometric Ge detectors were utilized to register scintillation photons emitted by the Li2_2100depl^{100\textrm{depl}}MoO4_4 crystal scintillators. The measurements were performed in the CROSS cryogenic set-up at the Canfranc underground laboratory (Spain). We observed that the Li2_2100depl^{100\textrm{depl}}MoO4_4 scintillating bolometers are characterized by excellent spectrometric performance (\sim3--6 keV FWHM at 0.24--2.6 MeV γ\gamma's), moderate scintillation signal (\sim0.3--0.6 keV/MeV depending on light collection conditions) and high radiopurity (228^{228}Th and 226^{226}Ra activities are below a few μ\muBq/kg), comparable to the best reported results of low-temperature detectors based on Li2_2MoO4_4 with natural or 100^{100}Mo-enriched molybdenum content. Prospects of Li2_2100depl^{100\textrm{depl}}MoO4_4 bolometers for use in rare-event search experiments are briefly discussed.Comment: Prepared for submission to MDPI Sensors; 16 pages, 7 figures, and 3 table

    Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program

    Full text link
    The LUMINEU program aims at performing a pilot experiment on neutrinoless double beta decay of 100Mo using radiopure ZnMoO4 crystals operated as scintillating bolometers. Growth of high quality radiopure crystals is a complex task, since there are no commercially available molybdenum compounds with the required levels of purity and radioactive contamination. This paper discusses approaches to purify molybdenum and synthesize compound for high quality radiopure ZnMoO4 crystal growth. A combination of a double sublimation (with addition of zinc molybdate) with subsequent recrystallization in aqueous solutions (using zinc molybdate as a collector) was used. Zinc molybdate crystals up to 1.5 kg were grown by the low-thermal-gradient Czochralski technique, their optical, luminescent, diamagnetic, thermal and bolometric properties were tested.Comment: Contribution to Proc. of Int. Workshop on Radiopure Scintillators RPSCINT 2013, 17-20 September 2013, Kyiv, Ukraine; to be published in EPJ Web of Conferences; expected to be online in January 2014; 6 pages, 6 figures, and 3 table
    corecore