45 research outputs found

    Up-regulation of Skp2 after prostate cancer cell adhesion to basement membranes results in BRCA2 degradation and cell proliferation.

    Get PDF
    Aberrant interaction of carcinoma cells with basement membranes (BM) is a fundamental pathophysiological process that initiates a series of events resulting in cancer cell invasion and metastasis. In this report, we describe the results of our investigations pertaining to the events triggered by the adhesion of normal (PNT1A) and highly metastatic (PC-3) prostate cells onto BM proteins. Unlike PNT1A, PC-3 cells adhered avidly to Matrigel BM matrix as well as to isolated collagen type IV, laminin, and heparan sulfate proteoglycan perlecan, main BM components. This aberrantly increased cancer cell adhesion resulted in sustained BRCA2 protein depletion and vigorous cell proliferation, a cascade triggered by beta1 integrin-mediated phosphatidylinositol 3-kinase activation leading to BRCA2 degradation in the proteasome. This latter effect was orchestrated by phosphatidylinositol 3-kinase-dependent up-regulation of Skp2, a subunit of the Skp1-Cul1-F-box protein ubiquitin complex that directly associates with BRCA2 as demonstrated by coimmunoprecipitation assays, determines its ubiquitination, and ultimately targets it for proteasomal degradation. Inhibition of Skp2 expression by small interference RNA prevented BRCA2 depletion and inhibited the trophic effect upon cell proliferation. These results provide additional evidence on the role of BRCA2 as a modulator of cancer cell growth and elucidate the molecular mechanisms involved in its down-regulation in cancer cells when interacting with BM, a crucial step in the biology of metastasis. Furthering the understanding of this molecular pathway may prove valuable in designing new therapeutic strategies aimed at modifying the natural history of prostate carcinoma

    Alzheimer's Proteins, Oxidative Stress, and Mitochondrial Dysfunction Interplay in a Neuronal Model of Alzheimer's Disease

    Get PDF
    In this paper, we discuss the interplay between beta-amyloid (Aβ) peptide, Tau fragments, oxidative stress, and mitochondria in the neuronal model of cerebellar granule neurons (CGNs) in which the molecular events reminiscent of AD are activated. The identification of the death route and the cause/effect relationships between the events leading to death could be helpful to manage the progression of apoptosis in neurodegeneration and to define antiapoptotic treatments acting on precocious steps of the death process. Mitochondrial dysfunction is among the earliest events linked to AD and might play a causative role in disease onset and progression. Recent studies on CGNs have shown that adenine nucleotide translocator (ANT) impairment, due to interaction with toxic N-ter Tau fragment, contributes in a significant manner to bioenergetic failure and mitochondrial dysfunction. These findings open a window for new therapeutic strategies aimed at preserving and/or improving mitochondrial function

    Down-regulation of BRCA2 Expression by Collagen Type I Promotes Prostate Cancer Cell Proliferation

    Get PDF
    BRCA2 is a tumor suppressor gene that when mutated confers an increased susceptibility to developing breast and prostate carcinoma. Besides its role in mediating DNA repair, new evidence suggests that BRCA2 may also play a role in suppressing cancer cell growth. Because altered interactions between neoplastic cells and the surrounding extracellular matrix (ECM) play a pivotal role in unchecked cancer cell proliferation and metastatic progression, we hypothesized that the ECM may have an effect in BRCA2 expression. By using normal and prostate carcinoma cell lines, we demonstrated that although normal cells transiently increase BRCA2 protein levels when adhering to the ECM protein collagen type I (COL1), carcinoma cells exhibit a significant reduction in BRCA2 protein. This aberrant effect is independent from de novo protein synthesis and results from COL1-beta(1) integrin signaling through phosphatidylinositol (PI) 3-kinase leading to BRCA2 ubiquitination and degradation in the proteasome. BRCA2 protein depletion after cancer cell adhesion to COL1 or in small RNA interference assays triggers new DNA synthesis, a trophic effect that is abrogated by recombinant BRCA2 expression. Blocking or inhibiting beta(1) integrin, PI 3-kinase, or proteasome activity all have a negative effect on COL1-mediated DNA synthesis in cancer cells. In normal cells, the transient increase in BRCA2 expression is independent from beta(1) integrin or PI 3-kinase and has no effect in cell proliferation. In summary, these results unravel a novel mechanism whereby prostate carcinoma cell proliferation is enhanced by the down-regulation of BRCA2 expression when interacting with COL1, a major component of the ECM at osseous metastatic sites

    Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Get PDF
    Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways

    Regulation of β1C and β1A Integrin Expression in Prostate Carcinoma Cells

    Get PDF
    beta(1C) and beta(1A) integrins are two splice variants of the human beta(1) integrin subfamily that act as an inhibitor and a stimulator of cell proliferation, respectively. In neoplastic prostate epithelium, both these variants are down-regulated at the mRNA level, but only beta(1C) protein levels are reduced. We used an experimental model consisting of PNT1A, a normal immortalized prostate cell line, and LNCaP and PC-3, two prostate carcinoma cell lines, to investigate both the transcription/post-transcription and translation/post-translation processes of beta(1C) and beta(1A). Transcriptional regulation played the key role for the reduction in beta(1C) and beta(1A) mRNA expression in cancer cells, as beta(1C) and beta(1A) mRNA half-lives were comparable in normal and cancer cells. beta(1C) translation rate decreased in cancer cells in agreement with the decrease in mRNA levels, whereas beta(1A) translation rate increased more than 2-fold, despite the reduction in mRNA levels. Both beta(1C) and beta(1A) proteins were degraded more rapidly in cancer than in normal cells, and pulse-chase experiments showed that intermediates and/or rates of beta(1C) and beta(1A) protein maturation differ in cancer versus normal cells. Inhibition of either calpain- or lysosomal-mediated proteolysis increased both beta(1C) and beta(1A) protein levels, the former in normal but not in cancer cells and the latter in both cell types, albeit at a higher extent in cancer than in normal cells. Interestingly, inhibition of the ubiquitin proteolytic pathway increased expression of ubiquitinated beta(1C) protein without affecting beta(1A) protein levels in cancer cells. These results show that transcriptional, translational, and post-translational processes, the last involving the ubiquitin proteolytic pathway, contribute to the selective loss of beta(1C) integrin, a very efficient inhibitor of cell proliferation, in prostate malignant transformation

    Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death

    Get PDF
    In rat cerebellar granule cells both reactive oxygen species production and release of cytochrome c take place during glutamate toxicity. This investigation was aimed (i) to ascertain whether and how these two processes are related and (ii) to gain insight into the role played by the released cytochrome c in the onset of neurotoxicity. Cytochrome c release takes place owing to the generation of reactive oxygen species both in glutamate-treated cerebellar granule cells and in sister control cultures incubated in the presence of the reactive oxygen species-generating system consisting of xanthine plus xanthine oxidase. In the early phase of neurotoxicity (30-min glutamate exposure) about 40% of the maximum (as measured at 3 h of glutamate exposure) cytochrome c release was found to occur in cerebellar granule cells from mitochondria that were essentially coupled and intact and that had a negligible production of oxygen free radicals. Contrarily, mitochondria from cells treated with glutamate for 3 h were mostly uncoupled and produced reactive oxygen species at a high rate. The cytosolic fraction containing the released cytochrome c was able to transfer electrons from superoxide anion to molecular oxygen via the respiratory chain and was found to partially prevent glutamate toxicity when added externally to cerebellar neurons undergoing necrosis. In the light of these findings, we propose that in the early phase of neurotoxicity, cytochrome c release can be part of a cellular and mitochondrial defense mechanism against oxidative stress

    Proteasome function is required for activation of programmed cell death in heat shocked tobacco Bright-Yellow 2 cells

    Get PDF
    AbstractTo find out whether and how proteasome is involved in plant programmed cell death (PCD) we measured proteasome function in tobacco cells undergoing PCD as a result of heat shock (HS-PCD). Reactive oxygen species (ROS) production, cytochrome c levels and caspase-3-like protease activation were also measured in the absence or presence of MG132, a proteasome inhibitor. We show that proteasome activation occurs in early phase of HS-PCD upstream of the caspase-like proteases activation; moreover inhibition of proteasome function by MG132 results in prevention of PCD perhaps due to the prevention of ROS production, cytochrome c release and caspase-3-like protease activation

    Beta1 integrins modulate cell adhesion by regulating insulin-like growth factor-II levels in the microenvironment

    Get PDF
    The interactions between cancer cells and the extracellular matrix (ECM) regulate cancer progression. The beta1C and beta1A integrins, two cytoplasmic variants of the beta1 integrin subfamily, are differentially expressed in prostate cancer. Using gene expression analysis, we show here that the beta1C variant, an inhibitor of cell proliferation, which is down-regulated in prostate cancer, up-regulates insulin-like growth factor-II (IGF-II) mRNA and protein levels. In contrast, beta1A does not affect IGF-II levels. We provide evidence that beta1C-mediated up-regulation of IGF-II levels increases adhesion to Laminin-1, a basement membrane protein down-regulated in prostate cancer, and that the beta1C cytoplasmic domain contains the structural motif sufficient to increase cell adhesion to Laminin-1. This autocrine mechanism that locally supports cell adhesion to Laminin-1 via IGF-II is selectively regulated by the beta1 cytoplasmic domain via activation of the growth factor receptor binding protein 2-associated binder-1/SH2-containing protein-tyrosine phosphatase 2/phosphatidylinositol 3-kinase pathway. Thus, the concurrent local loss of beta1C integrin, of its ligand Laminin-1, and of IGF-II in the tumor microenvironment may promote prostate cancer cell invasion and metastasis by reducing cancer cell adhesive properties. It is, therefore, conceivable that reexpression of beta1C will be sufficient to revert a neoplastic phenotype to a nonproliferative and highly adherent normal phenotype
    corecore