12 research outputs found

    Real-Time Tune Measurements on the CERN Antiproton Decelerator

    Get PDF
    A novel system for real-time tune measurement during deceleration of a low-intensity particle beam is presented. The CERN Antiproton Decelerator decelerates low intensity (2x107) antiproton beams from 3.5 GeV/c to 100 MeV/c. Because of the eddy-currents in the magnets, a tune-measurement during a pause in the deceleration would not be representative. One must thus be able to measure the tune in real time during the deceleration. The low intensity of the antiproton beam prevents the use of standard Schottky techniques, and swept Beam Transfer Function (BTF) measurements are too slow. A system was therefore developed which uses an M-shaped power spectrum, exciting the beam in a band around the expected frequency of a betatron side-band. Excitation at the betatron frequency, where beam response is highest, is thus minimized and measurements of BTF, and therefore the tune, can be made with much reduced emittance blow-u

    The New Digital-Receiver-Based System for Antiproton Beam Diagnostics

    Get PDF
    An innovative system to measure antiproton beam intensity, momentum spread and mean momentum in CERN's Antiproton Decelerator (AD) is described. This system is based on a state-of-the-art Digital Receiver (DRX) board, consisting of 8 Digital Down-Converter (DDC) chips and one Digital Signal Processor (DSP). An ultra-low-noise, wide-band AC beam transformer (0.2 MHz - 30 MHz) is used to measure AC beam current modulation. For bunched beams, the intensity is obtained by measuring the amplitude of the fundamental and second RF Fourier components. On the magnetic plateaus the beam is debunched for stochastic or electron cooling and longitudinal beam properties (intensity, momentum spread and mean momentum) are measured by FFT-based spectral analysis of Schottky signals. The system thus provides real time information characterising the machine performance; it has been used for troubleshooting and to fine-tune the AD, thus achieving further improved performances. This system has been operating since May 2000 and typical results are presented

    Antiproton beam parameters measurement by a new digital-receiver-based system

    Get PDF
    The Antiproton Decelerator (AD) provides the users with very low intensity beams, in the 107 particles range, hence prompting the development of an innovative measuring system, which was completed in early 2000. This system measures antiproton beam intensity for bunched and debunched beams, together with momentum spread and mean momentum for debunched beams. It uses a state-of-the-art Digital Receiver board, which processes data obtained from two ultra-low-noise, wide-band AC beam transformers. These have a combined bandwidth in the range 0.02 MHz - 30 MHz and are used to measure AC beam current modulation. For bunched beams, the intensity is obtained by measuring the amplitude of the fundamental and second RF Fourier components. On the magnetic plateaus the beam is debunched for stochastic or electron cooling and longitudinal beam properties (intensity, momentum spread and mean momentum) are measured by FFT-based spectral analysis of Schottky signals. The system provides real-time information characterising the machine performance; it has been used for troubleshooting and to fine-tune the AD, thus allowing further improved performance. This system has been operating since May 2000 and providing beam intensity data to the users on a routine basis since late 2000. A dedicated software package was expressly developed to take care of the control, data acquisition and processing phases. It consists of three main codes, namely a GUI, a Real Time Task and a Low Level Code. This report gives an overview of both the hardware and software developed

    Beam Measurement Systems for the CERN Antiproton Decelerator (AD)

    Get PDF
    The new, low-energy antiproton physics facility at CERN has been successfully commissioned and has been delivering decelerated antiprotons at 100 MeV/c since July 2000. The AD consists of one ring where the 3.5 GeV/c antiprotons produced from a production target are injected, rf manipulated, stochastically cooled, decelerated (with further stages involving additional stochastic and electron cooling and rf manipulation) and extracted at 100 MeV/c. While proton test beams of sufficient intensity could be used for certain procedures in AD commissioning, this was not possible for setting-up and routine operation. Hence, special diagnostics systems had to be developed to obtain the beam and accelerator characteristics using the weak antiproton beams of a few 10E7 particles at all momenta from 3.5 GeV/c down to 100 MeV/c. These include systems for position measurement, intensity, beam size measurements using transverse aperture limiters and scintillators and Schottky-based tools. This paper gives an overall view of these systems and their usage

    CERN kan vĂŠre noget for dig

    No full text

    Upgrades to the Digital Receiver based Low-Intensity Beam Diagnostics for CERN AD

    No full text
    The CERN AD Low-Intensity Beam Multi-Diagnostics (LIMD) has been upgraded as planned since 2001 by adding tune measurements during ramps and plateaus, based on the Beam Transfer Function (BTF) method. This relies on transversally exciting the beam by a deflector and deriving the BTF and coherence function from FFTs of excitation and beam response recorded by digital receivers (DRX). These, continuously tuned to a betatron sideband, pass data to a digital signal processor (DSP) on the DRX board for data processing. The upgrades discussed also include increased longitudinal frequency range, noise reduction measures and digital flags for setup of Data Acquisition (DAQ) and processing parameters
    corecore