64 research outputs found

    Avian piscivores: basis for policy.

    Get PDF
    In Britain, many birds eat fish in fresh waters but only three species, cormorant, red-breasted merganser and goosander, are commonly perceived to present serious problems for freshwater fisheries. Complaints are mainly that cormorants eat large fish and that all three bird species eat so many juvenile fish, that there are subsequently fewer fish to be harvested or angled, but also that persistent predation by birds changes fish behaviour so that they are less 'catchable'. To this end, this report reviews existing information on the current status, foraging ecology, and population biology of the three bird species as background to their potential impact on fisheries. Discusses fish population dynamics within the context of predation effects. Reviews existing experimental evidence for impacts on fish populations and fisheries; and describes current legislation, discusses potential criteria for serious damage to a fishery, and suggests ways forward for NRA policy and research

    The stomach contents of cormorants from Loch Leven, 1992-94.

    Get PDF

    Density-dependent increase in superpredation linked to food limitation in a recovering population of northern goshawks, Accipiter gentilis

    Get PDF
    We are grateful to R. Lourenço and A.K. Mueller for their helpful comments. We thank Forest Research for funding all fieldwork on goshawks during 1973-1996, Forest Enterprise for funding fieldwork after 1998 and T. Dearnley and N. Geddes for allowing and facilitating work in Kielder Forest. This work was also partly funded by a Natural Environment Research Council studentship NE/J500148/1 to SH and a grant NE/F021402/1 to XL and by Natural Research. We thank I. Yoxall and B. Little for the data they collected and their contributions to this study. Lastly, we thank English Nature and the British Trust for Ornithology for kindly issuing licences to monitor goshawk nest sitesPeer reviewedPostprin

    Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus

    Get PDF
    Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory

    An evidence-based assessment of the past distribution of Golden and White-tailed Eagles across Wales

    Get PDF
    Two species of eagles (Golden and White‐tailed) bred in Wales during prehistoric and historic times and became regionally extinct as breeding species in the mid‐1800s. They are iconic and charismatic, and discussions about reintroducing them back into the Welsh landscape have been ongoing for years. Reintroductions, however, can be risky, costly and/or contentious. To address these concerns, and to judge whether it is appropriate to reintroduce a regionally extinct species; the “International Union for Conservation of Nature (IUCN)” have produced criteria by which a proposed reintroduction can be assessed. A key criterion is that the potential reintroduction location lies within the former range of the species. In this study, we addressed this criterion by assessing the past distributions of Golden and White‐tailed Eagles within Wales. Using historic observational data, fossil/archaeological records and evidence from place‐names in the Welsh language, we demonstrated strong evidence for the presence of both of these eagle species in Wales in pre‐historic and historic times. We used kernel density functions to model the likely core distributions of each species within Wales. The resulting core distributions encompassed much of central and west‐north Wales for both species, with the White‐tailed Eagle exhibiting a wider core distribution extending into south Wales. Our results fill knowledge gaps regarding the historic ranges of both species in Britain, and support the future restoration of either or both species to Wales

    Crossbill numbers in old pinewoods on uppper Deeside and Speyside

    No full text

    The diet of Grey Herons Ardea cinerea breeding at Loch Leven, Scotland, and the importance of their predation on ducklings

    No full text
    Regurgitations from nestling Grey Herons Ardea cinerea at Loch Leven, Scotland, April-July 1981–83, contained mainly three types of prey:perch, brown trout and ducklings. The diet varied markedly through the season but not between years. As the heron breeding season progressed, perch occurred in fewer regurgitations and ducklings in more. There was no seasonal variation in the occurrence of brown trout. Regular collections of duckling down from the heronry suggested that the consumption of ducklings peaked in early June. The ducklings taken by herons were less than 10 days old, Mallard ducklings predominating before mid June and Tufted ducklings later. Most ducklings were taken by only a few herons:those that bred earliest and which initially fed their young on perch. Ducklings became a major part of their diet in the late nestling period and broods fed on ducklings fledged no more or fewer young than others. Herons feeding their young on brown trout took ducklings rarely, if ever. It is argued that variation in the contents of regurgitations resulted from three interacting variables; the type of feeding habitat used by individual Grey Herons, the date at which they bred and the date that regurgitations were produced by their nestlings. The numbers of ducklings taken by herons were calculated to be about 230 in 1981 and 291 in 1982, about 5% of Mallard and 3:b of Tufted ducklings estimated to have hatched annually. Assuming herons continued to consume ducklings at the same rate after their young had dispersed, the figures for Tufted ducklings would be higher but still only about 4% in 1981 and 6% in 1982. Compared with total duckling losses of over 75%, predation by Grey Herons was minor and did not affect duckling production in the years concerned

    Cormorants and the Loch Leven Trout Fishery

    Get PDF
    corecore