6 research outputs found

    Active vibration control using mechanical and electrical analogies

    Get PDF
    Mechanical-electrical analogous circuit models are widely used in electromechanical system design as they represent the function of a coupled electrical and mechanical system using an equivalent electrical system. This research uses electrical circuits to establish a discussion of simple active vibration control principles using two scenarios: an active vibration isolation system and an active dynamic vibration absorber (DVA) using a voice coil motor (VCM) actuator. Active control laws such as gain scheduling are intuitively explained using circuit analysis techniques. Active vibration control approaches are typically constraint by electrical power requirements. The electrical analogous is a fast approach for specifying power requirements on the experimental test platform which is based on a vibration shaker that provides the based excitation required for the single Degree- of-Freedom (1DoF) vibration model under study

    Design and validation of a numerical high aspect ratio aeroelastic wind tunnel model (HMAE1)

    No full text
    Abstract: The aircraft manufacturer Embraer, the German Aerospace Center (DLR), the Netherlands Aerospace Centre (NLR) and German-Dutch Wind Tunnels (DNW) have tested an innovative highly flexible wing within an aeroelastic wind tunnel experiment in the transonic regime. The HMAE1 project was initiated by Embraer to test its numerical predictions for wing flutter under excessive wing deformations in the transonic regime. A highly elastic fiberglass wing-body pylon nacelle wind tunnel model, which is able to deform extensively, was constructed for the experiment. The model was instrumented with a large number of pressure orifices, strain gauges, stereo pattern recognition markers and accelerometers. The wing was tested from M = 0.4 to M = 0.9 for different angles of attack and stagnation pressure. The HMAE1 model was tested in two different test campaigns in which the Mach number was increased. This paper will focus on the first test campaign of the HMAE1 project in which the windtunnel model is tested up to M = 0.7 and will describe the development of the physical numerical structural dynamic MSC Nastran model representing the manufactured windtunnel model in order to perform numerical aeroelastic analyses

    Palinología del Pérmico de la Cuenca Claromecó-Colorado, Argentina

    No full text
    corecore