12,230 research outputs found
Hawking radiation for non asymptotically flat dilatonic black holes using gravitational anomaly
The -dimensional scalar field action may be reduced, in the background
geometry of a black hole, to a 2-dimensional effective action. In the near
horizon region, it appears a gravitational anomaly: the energy-momentum tensor
of the scalar field is not conserved anymore. This anomaly is removed by
introducing a term related to the Hawking temperature of the black hole. Even
if the temperature term introduced is not covariant, a gauge transformation may
restore the covariance. We apply this method to compute the temperature of the
black hole of the dilatonic non asymptotically flat black holes. We compare the
results with those obtained through other methods.Comment: Latex file, 22 pages. Some discussions enlarged. New references.
Accepted for publication in the European Physical Journal
Excitonic effects in the optical properties of CdSe nanowires
Using a first-principle approach beyond density functional theory we
calculate the electronic and optical properties of small diameter CdSe
nanowires.Our results demonstrate how some approximations commonly used in bulk
systems fail at this nano-scale level and how indispensable it is to include
crystal local fields and excitonic effects to predict the unique optical
properties of nanowires. From our results, we then construct a simple model
that describes the optical gap as a function of the diameter of the wire, that
turns out to be in excellent agreement with experiments for intermediate and
large diameters.Comment: submitte
Interaction-induced topological properties of two bosons in flat-band systems
In flat-band systems, destructive interference leads to the localization of
non-interacting particles and forbids their motion through the lattice.
However, in the presence of interactions the overlap between neighbouring
single-particle localized eigenstates may enable the propagation of bound pairs
of particles. In this work, we show how these interaction-induced hoppings can
be tuned to obtain a variety of two-body topological states. In particular, we
consider two interacting bosons loaded into the orbital angular momentum
states of a diamond-chain lattice, wherein an effective flux may yield a
completely flat single-particle energy landscape. In the weakly-interacting
limit, we derive effective single-particle models for the two-boson
quasiparticles which provide an intuitive picture of how the topological states
arise. By means of exact diagonalization calculations, we benchmark these
states and we show that they are also present for strong interactions and away
from the strict flat-band limit. Furthermore, we identify a set of doubly
localized two-boson flat-band states that give rise to a special instance of
Aharonov-Bohm cages for arbitrary interactions
On a generalized gravitational Aharonov-Bohm effect
A massless spinor particle is considered in the background gravitational
field due to a rotating body. In the weak field approximation it is shown that
the solution of the Weyl equations depend on the angular momentum of the
rotating body, which does not affect the curvature in this approximation. This
result may be looked upon as a generalization of the gravitational
Aharonov-Bohm effect.Comment: 10 pages, LATEX fil
Construction of the B88 exchange-energy functional in two dimensions
We construct a generalized-gradient approximation for the exchange-energy
density of finite two-dimensional systems. Guided by non-empirical principles,
we include the proper small-gradient limit and the proper tail for the
exchange-hole potential. The observed performance is superior to that of the
two-dimensional local-density approximation, which underlines the usefulness of
the approach in practical applications
- …